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Abstract—Multi-step scientific workflows have become promi-
nent and powerful tools of data-driven scientific discovery. Run-
time analytic techniques are now commonly used to mitigate the
performance effects of using parallel file systems as staging areas
during workflow execution. However, workflow construction and
deployment for extreme-scale computing is still largely an ad hoc
process with uneven support from existing tools. In this paper,
we present SMARTBLOCK, an approach to designing generic,
reusable components for end-to-end construction of workflows.
Specifically, we demonstrate that a small set of SMARTBLOCK
generic components can be reused to build a diverse set of
workflows, using examples based on actual analytic processes
with three well-known scientific codes. Our evaluation shows
promising scaling properties as well as negligible overheads for
using a modular approach over a custom, “all-in-one” solution.
As extreme-scale systems incorporate data analytics on simula-
tion data as it is generated at rates that far outstrip available I/O
bandwidth, tools such as SMARTBLOCK will become increasingly
valuable for defining and deploying flexible, efficient workflows.

I. INTRODUCTION

Multi-step scientific simulation and engineering workflows

have become increasingly prominent as extreme-scale comput-

ing environments evolve. Made up of collections of coupled

analytic and/or data processing steps designed to refine data

into information, such workflows are becoming powerful tools

of data-driven scientific discovery. Performance issues caused

by storage I/O between workflow stages become prohibitive

as such workflows grow in size and complexity, a situation

unlikely to improve given the relative future projections of

storage system bandwidth and system compute capability. So-

called in situ techniques, or runtime data analysis, in which

analysis and visualization components perform data reductions

and transformations on data in memory, are now being widely

used to mitigate these issues.

While tools exist for facilitating in situ processing between

data producers and consumers, large-scale workflows are still

constructed ad hoc. Existing tools provide limited traction on

the complexities of workflow implementation: widely varying

data formats; impedance mismatches between the degrees of

parallelism provided by various workflow components; and

component (re-)deployment. However, even as the workflows

themselves exhibit these differences, many of their component

analytical routines remain similar.

In this work we introduce SMARTBLOCK, an approach to

designing generic, reusable components for the construction

of scientific workflows from start to finish. SMARTBLOCK

allows for the assembly and launch of a variety of in situ
-capable workflows “out of the box,” without recompila-

tion and requiring only one-time modifications to the output

methods of the driving simulation codes. The SMARTBLOCK

demonstrations leverage both self-describing data exchanged

through the Adaptable I/O System (ADIOS) [1] interface as

well as the stream-based, publish/subscribe interaction model

implemented by the underlying transport system, FlexPath [2].

SMARTBLOCK consists of generic components that perform

commonly used operations in workflows, such as multi-

dimensional data filtering and histogram analysis. We present

four such components in this paper. While this set is not

exhaustive, it demonstrates the standardization benefits of

the SMARTBLOCK approach by describing their use in the

construction and deployment of three very different workflows.

Specifically, this paper makes the following contributions:

• A description of the SMARTBLOCK approach for the

construction of in situ scientific workflows; and

• Details of a representative set of in situ generic, reusable

analytic components designed for the deployment of full

SMARTBLOCK workflows;

We demonstrate the effectiveness of the approach through

a performance evaluation of SMARTBLOCK using three well-

known scientific simulation drivers, showing its functionality

as well as its strong and weak scaling characteristics. Since

this modular approach aims to replace custom code, we

provide a comparison of the performance of a representative

SMARTBLOCK workflow with that of a fixed “all-in-one” code

performing the same analyses.

The remainder of this paper is organized as follows. First

is a survey of related work in §II. Second, §III presents

the design approach. Next, §IV presents the demonstration

implementation details. The evaluation is presented in §V

followed by conclusions and future work in §VI.
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II. RELATED WORK

Existing workflow systems have typically only been able

to offer generic, reusable components when the workflow

system is for a particular niche with a fixed datatype and

standardized interfaces. For example, enterprise document

processing systems may all work against a single database

with each user only seeing their current worklist. As docu-

ments are processed, they are moved to the next work queue,

or completed state, according to hand-coded rules [3]. The

Workflow Management Coalition [4] has developed standards

to make enterprise process workflows more portable. These

standards are not intended to make components reusable,

but to make different workflow engines able to inter-operate

or to port a workflow from one engine to another. The

actual communication interfaces and data types are left to the

components themselves.

More directly related to this work and the scientific com-

munity are workflow engines and frameworks custom-made

for the parallel computing environment. Pegasus [5] and

DAGMan [6] work together to offer an engine to execute a

workflow and a front-end system to construct the workflow

process itself. However, the focus in DAGMan is on specifying

dependencies between the jobs involved in the workflow, so

as to execute components only when required and provide

resilience. In contrast, in SMARTBLOCK, the entire workflow

is executed at once, with FlexPath allowing readers and writers

to block until the corresponding writer or reader is available

for data exchange. Furthermore, the Pegasus/DAGMan engine

does not provide generic, reusable components.

As an alternative to DAGMan, Swift [7] is a scripting

language that allows ordinary applications to be composed

into parallel scripts, and eventually into workflows, with de-

pendencies specified in the script. However, these applications

themselves must be written outside of the Swift script.

Kepler [8] offers a nice GUI for assembling different

kinds of scientific workflows. Each component is an actor,

with channels connecting actors and a director managing the

execution. Complex workflows using Kepler have been assem-

bled for many communities. However, the large collection of

components that come with Kepler are mainly designed to

work in a single Java Virtual Machine instance; using HPC-

scale components requires significant effort both in coding the

custom components and in allowing the I/O methods used to

be understood by the higher-level Kepler engine.

To address much of the complexity of communicating

between separate parallel components, inline approaches are

being investigated. We use “inline” in the sense of “linked into

the driving process.” Catalyst [9] offers a way to integrate the

ParaView [10] analysis and visualization system directly into

the simulation executable through explicit calls from the host

application into Catalyst routines with predictable data types

on in-memory data structures. While this can work for limited

kinds of data processing, it clearly cannot take advantage

of additional resources available for off-site analysis, instead

taking cycles away from the main scientific code.

Libsim [11] has a similar relationship to VisIt [12] as

Catalyst has to ParaView. As with Catalyst, key limitations

of Libsim coming from the fact that it runs on the same node

as the simulation are that scaling limitations can prevent its use

at extreme scale and that time series analysis and visualization

can be difficult.

A middle path between in situ and offline processing was

investigated in PreDatA [13]. This work demonstrates that

the placement of the analytics can significantly affect the

performance of workflows, and that this placement can be

determined in part by the communication characteristics of

the analytics components.

In the Big Data community, there exist several widely-

used frameworks for the analysis of large data sets, and these

can possibly operate on in-memory data and also be chained

together over several analytical steps. However, these tools

are largely based on the MapReduce model of data analysis,

and the types of operations performed in scientific analyses

generally cannot be well defined over a key-value view of the

data and do not lend themselves well to this model.

Companion work to SMARTBLOCK within this same project

is Bredala [14]. This work presents an attempt to build a data

model for in situ workflows. It has some similarity to FFS [15].

Unlike FFS, which is part of a much more complex infras-

tructure for typed messaging between distributed processes,

Bredala strictly focuses on a data model that can preserve

semantic integrity across redistributions.

Overall, while all of these efforts are addressing different

portions of the online workflows puzzle, none of them address

the idea of general, reusable data transformation and analysis

components for the assembly of entire in situ HPC workflows

out of the box.

III. DESIGN

A. Design Goals

SMARTBLOCK components are designed with the general

goal of allowing for the assembly of a wide variety of in

situ workflows. Below are some general guidelines for the

design of such components which both guided the design of

the existing SMARTBLOCK components and which we also

gained in retrospect.

1) To allow for the greatest variety of workflows, data

manipulation primitives and data analysis components should

be packaged in similar ways – that is, regardless of their

individual complexity, the pieces that make up these workflows

should export compatible interfaces as much as possible.

2) The ability to handle multi-dimensional data, along with

the consistent labeling of dimensions and quantities as meta-

data, allows for components that are highly adaptable and sim-

ple to use. By designing components that can operate, as much

as possible, on data having any number of dimensions, we can

allow for a large variety of arrangements of components.

3) While different types of components understand varying

levels of semantics, maintaining a high level of semantics

(i.e., labeling quantities and dimensions as much as possible)

early on and when passing through components that do not
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necessarily require all of these labels allows for the most

functionality downstream.
4) Because programming languages understand multi-

dimensional data as being in a specific order in memory, there

is a need for components that re-arrange data and re-label

its dimensions without necessarily changing its size. Indeed,

when data is stored in a database on disk, it is simple to gain a

desired view of the data, for example by using SQL. However,

in the middle of a real-time workflow, data must be presented

to the components in a format that they expect and understand.

This requires a specific ordering of data in memory. We expand

on this topic in the description of the Dim-Reduce component

later in this section.
These insights guide the design for the reusable work-

flow components presented in this paper. From a general

perspective, designing a smaller number of components to

assemble workflows with finer step decomposition allows

for more general processing than designing more numerous

components each having more complex functionality. And, as

we show in §V, componentizing the analysis involves only

minor changes in overall workflow performance.

B. Components Overview
SMARTBLOCK currently consists of four generic compo-

nents that perform common operations in scientific workflows.

These are Select, Magnitude, Dim-Reduce, and Histogram.

Again, the choice of these components is not meant to en-

compass as wide a variety of workflow purposes as possible

as-is. However, that we were able to deploy three very dif-

ferent workflows driven by different scientific codes using the

existing SMARTBLOCK components demonstrates a promising

approach.
Each component is a single MPI executable that uses the

self-describing property of data exchanged through ADIOS to

discover the dimensions and their sizes of the data it receives

from its upstream component; in this way, the component is

able to automatically partition the generally large dataset that

it receives among its constituent processes. The component in

question then operates on the data in a way that is specified

by the user through command-line parameters. By specifying

the names of the streams and the arrays that hold the data

of interest through additional parameters, the user is able to

specify an entire workflow as a series of applications launched

together in a single job script. This procedure is detailed in §V.
Finally, the components are designed based on the assump-

tion that the driving simulation outputs data at regular time

steps. When it is done processing the data belonging to a

particular time step for a stream, a component can request

the data in the next time step. With FlexPath, this works as

follows: readers block until the corresponding writers are ready

to output the data; similarly, until readers are able to request

the data for the next time step, corresponding writers store the

data for this step in an internal queue.

C. Select
Given an input stream that includes an array with any

number of dimensions, the Select component extracts certain

aprun s e l e c t i n p u t−s t r eam−name i n p u t−a r r a y−name
dimens ion−i n d e x o u t p u t−s t r eam−name
o u t p u t−a r r a y−name [ a rg 1 ] [ a rg2 ] . . .

Fig. 1. Select Component Usage

aprun h i s t o g r a m i n p u t−s t r eam−name
i n p u t−a r r a y−name num−b i n s

Fig. 2. Histogram Component Usage

rows (indices) from one of the dimensions. Thus, it outputs

an array with the same number of dimensions, but with the

dimension of interest having a smaller size. In order to select

the quantities of interest, the component uses a header which

must be passed by the previous component in the workflow as

part of the meta-data that ADIOS can include in the stream.

The header is a list of strings that name the quantities in the

dimension of interest. This allows the user to specify the names

of the quantities (rows) to select by name, rather than by index

number, which is easier to do when preparing the launch script.

Figure 1 illustrates the usage of the Select component.

The input and output stream and array names identify the

stream and dataset on which Select operates, as well as how

the component renames them in its output. All components

use similar parameters; this lets the user assemble a workflow

by using the same stream and array names for the output of

an upstream component as for the input of its downstream

component.

The parameter dimension-index identifies the dimen-

sion in which Select will filter certain rows. ADIOS maintains

the number of dimensions as meta-data in the stream, and one

can identify them by number. Finally, the arg1 . . . parameters

identify the names of the rows to keep in the dimension of

interest. Select is able to identify these rows by name using

the header described previously.

D. Magnitude

The Magnitude component calculates the magnitudes of an

array of vectors. That is, it operates on a two-dimensional

array, where one dimension spans the data points, for exam-

ple the particles that make up a simulation, and the other

dimension spans any number of components of the same

vector for each data point, for example the three-dimensional

components of velocity, as we use it in one workflow we

demonstrate later.

The output of Magnitude is a one-dimensional array holding

the magnitudes of the input vectors. This SMARTBLOCK

component only takes the names of the input and output

streams as command-line parameters, since it always operates

on a two-dimensional array.

E. Histogram

The processes that make up the Histogram component parti-

tion among themselves a one-dimensional array of data. They

communicate to discover the global minimum and maximum

values in the array, create a number of bins between these two

extremes, and then communicate again to count the number
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aprun dim−r e d u c e i n p u t−s t r eam−name
i n p u t−a r r a y−name dim−to−remove dim−to−grow
o u t p u t−s t r eam−name o u t p u t−a r r a y−name

Fig. 3. Dim-Reduce Component Usage

Toroidal slice
Grid point

Fig. 4. Representation of GTCP Toroid, modification of [16]

of values in the globally partitioned array that fall in each bin.

The number of bins to use must be passed to the component

when it is launched.

In our current implementation, one of the processes of

Histogram writes the output to a file on disk. We chose this

approach because this component is often used as an endpoint

in the workflow and because the output of this component is

generally very small compared to its input and can be easily

written by a single process.

Figure 2 illustrate the usage of the Histogram component.

Because it is currently implemented as an endpoint component,

Histogram only requires the names of the input stream and

array names. In addition, the user specifies the desired number

of bins.

F. Dim-Reduce

Dim-Reduce is a component that removes one dimension

from its input array, “absorbing” it into another dimension

without modifying the total size of the data.

This operation is necessary because certain analytical com-

ponents in workflows expect data having a particular number

of dimensions. Due to the fact that multi-dimensional data

is arranged in a particular order in memory, this operation

can require a re-arrangement of the data in the overall linear

representation of the multi-dimensional array.

To better explain the need for Dim-Reduce, we turn to

one workflow which we explain in more detail later. GTCP

is a toroidal plasma simulator, which breaks up the plasma

into toroidal slices and grid points, each having a number

of associated physical quantities that describe it (such as the

pressure inside it), as illustrated in Figure 4.

In the workflow that is driven by this simulation, we wish

to obtain as a final result a histogram of all the pressures at

all grid points in the entire toroid. However, the Histogram

component expects one-dimensional data. As it is output from

the GTCP simulation, the data is three-dimensional, with one

dimension spanning the toroidal slices of the toroid, another

dimension spanning the grid points inside of each such slice,

and the last dimension spanning the 7 quantities that describe

various properties of the plasma in each grid point.

To turn this three-dimensional data into a format that

Histogram can operate on, the data must pass through two in-

stances of Dim-Reduce. We describe the workflows in greater

detail in §V.

IV. IMPLEMENTATION

Each component is an MPI executable written in C/C++,

varying in length from 191 lines of code (Histogram) to 459

(Select). Their code is publicly available in [?]. The processes

that make up a single component belong to the same MPI

communicator once the component is launched. For each

timestep, these processes communicate to determine how to

partition the overall incoming dataset so that each process

receives an approximately equal amount of data.

FlexPath allows for the exchange of data between different

communicators living in different MPI executables, and this

functionality is presented to the components through the

ADIOS interface. Other implementation paths are possible

here, requiring mainly a common communication mechanism

and a typed payload. For example, the HDF5 Virtual Object

Layer [17] and Mercury [18] + Boost serialization could be

used.

ADIOS allows each process involved in the read operation

to specify a bounding box for the multi-dimensional array

portion it will receive. FlexPath carries out the actual MxN

exchange of data, ensuring each reading process receives all

the data that it specifes in its bounding box, even if this portion

is itself partitioned among several writers.

More generally, FlexPath implements a publish/subscribe,

asynchronous, stream-based data exchange abstracted to the

components through the ADIOS interface. This facilitates the

assembly of SMARTBLOCK workflows in a number of ways:

1. Specifying the input and output stream names as

command-line parameters to the SMARTBLOCK components

when they are launched allows the user to connect any number

of components into a full workflow.

2. Workflow components can be launched in any order:

downstream components will wait for data from upstream

components and upstream components will buffer data up to

a certain size until they are able to send it downstream.

3. Even if the number of processes used for one compo-

nent is different from that used for the previous one in the

workflow, each component can split the data (and therefore

the computation) evenly among its processes.

4. A FlexPath stream is implemented as writer side internal

data buffering until readers are ready to request the data, at

which point a separate writer side thread carries out the data

exchange. This asynchronous model allows a SMARTBLOCK

component to move on to the computation of a subsequent

timestep when a downstream component is not yet ready to

accept data, effectively overlapping computation and IO and

offering high performance to a componentized workflow.

There is no need to re-compile SMARTBLOCK components

when using them in different workflows. Any configuration
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of a component for a particular workflow can be provided

through run-time arguments.

To enable a scientific code to drive a workflow using our

SMARTBLOCK components, one needs to modify its output

routines to use ADIOS. Specifically, ADIOS expects multi-

dimensional arrays to be packed linearly, with the variables

describing the dimensions specified in an XML configuration

file that is read by ADIOS at run time. Roughly 70 lines of

code were required to allow each of the three simulations in

our evaluation, namely LAMMPS, GTCP, and GROMACS, to

work with SMARTBLOCK, along with an approximately 25-

line XML file. This small, one-time modification to a simula-

tion allows it to work with any SMARTBLOCK workflow.

V. EVALUATION

We designed and implemented three realistic in situ work-

flows based on scientific codes having large user bases:

the LAMMPS Newtonian particle simulator [19], GTCP, a

particle-in-cell Tokamak simulator [20], and GROMACS, a

biomolecular dynamics code [21]. These are illustrated in

Figure 5, Figure 6, and Figure 7.

The primary purpose of our evaluation is to demonstrate

the successful assembly and deployment of SMARTBLOCK

workflows. In doing so, we also present useful weak and strong

scaling properties exhibited by SMARTBLOCK components

during these runs, as well as a measurement-based validation

of the componentized method to building workflows, which is

inherent in the SMARTBLOCK approach.

The large-scale evaluation is performed on Titan, the Cray

XK7 machine at Oak Ridge National Laboratory. It consists

of 18,688 nodes each with 1 16-core AMD Opteron CPU and

32 GB of RAM. The interconnect is a Gemini network.

The smaller-scale results are obtained from the Falcon

cluster on the Georgia Tech campus; it is an 80-node cluster

of Intel Xeon X5660 machines, with 12 cores and 24 GB of

RAM per node.

A. Workflows

The three SMARTBLOCK workflows used in this evalua-

tion perform different kinds of runtime data analysis overall.

However, there are similarities between them. Each driving

scientific code is a simulation that operates on a large number

of units of equal size — namely, atoms in the case of

LAMMPS and GROMACS, and grid points in the case of

GTCP (see Figure 4). Each simulation operates over these

units with fine-grained time step granularity and outputs the

states of these units at coarse-grained intervals. From this point

on, we refer to these larger I/O intervals as “timesteps.” These

states correspond to various properties of these units, such

as the positions of individual atoms or the temperatures of

individual grid points.

All three SMARTBLOCK workflows based on these simu-

lations result in a per-timestep histogram that describes the

spread of a certain quantity of interest over these units. It is

often the case for in situ workflows that the resulting data set

has a much smaller size than the raw data set output by the

simulation. A histogram illustrates one such final step in a

workflow that presents a human-readable reduction of data,

and this explains our choice for Histogram as one of the

SMARTBLOCK components implemented for this work.

Still, how the workflows arrive at their results varies sig-

nificantly. Histogram expects one-dimensional input data, and

our choices for Select, Dim-Reduce, and Magnitude illustrate

examples of various generic operations that tranform different

data sets into a format that the allows one final, simple

component such as Histogram to operate on.

All components of SMARTBLOCK workflows, including the

simulation, are launched simultaneously using a script such as

that shown in Figure 8. The asynchronous property of FlexPath

allows readers to block until the corresponding writers are

ready to send their data, and vice versa. Providing the names

of the input and output streams lets the user connect any

number of components in any order. For example, the launch

script tells Magnitude to look for an array named lmpsel
in a FlexPath stream named lmpselect.fp, which are the

names used to specify the output stream and array of Select.

Thus, this script specifies that Magnitude is immediately

downstream from Select in this workflow. Notice, also, the

decreasing numbers of processes used in each component.

We configure LAMMPS to simulate a disruption (a “crack”)

in a thin layer of particles and output 5 numerical properties

describing each particle in the simulation at regular timestep

intervals. This corresponds to two-dimensional data (particles

as one dimension and properties of interest as another) and

among these properties are the three-dimensional components

of the particles’ velocities. Select filters out the ID and Type

of the particles, keeping the velocities. Magnitude computes

the magnitudes of these velocity vectors, outputting a one-

dimension array of these magnitudes. Histogram outputs a

human-readable distribution of the velocity magnitudes of all

particles involved in this simulation.

GTCP, a code that simulates a toroidally confined plasma,

splits the solid into toroidal slices, each made up of a number

of grid points. For each of these grid points, it outputs 7

properties of the plasma such as pressure and energy flux. This

division of the toroid is illustrated in Figure 4. The output of

the simulation is therefore a three-dimensional array in which

the dimensions span: (a) toroidal ranks (toroidal slice number),

(b) grid point numbers, and (c) various properties that describe

each grid point. Of these 7 properties, Select filters out all but

the pressure in each gridpoint. However, the output of Select

is still three-dimensional, and the data must go through two

instances of Dim-Reduce to allow Histogram to operate on it,

showing in the end a distribution of the pressures in the entire

toroid.

Among other quantities, GROMACS outputs the three-

dimensional coordinates of the atoms involved in the sim-

ulation at regular intervals. The data array itself is two-

dimensional: 3D coordinates over all atoms. From these, we

obtain a histogram of the distances of the atoms from the

origin for each timestep, showing an evolution of the spread

of the particles throughout the simulation.
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LAMMPS

(LAMMPS output)

       Dimensions: (D,E)
  D : spans the particles
  E : {ID, Type, vx, vy, vz}

SELECT

     Dimensions: (D,E')
   D spans the particles
   E' : {vx, vy, vz}

MAGNITUDE

 1 dimension:
 [ |v0|, |v1|, |v2|, ... ]

HISTOGRAM

Histogram of |v|

(Work�ow output)
Fig. 5. LAMMPS Workflow

GTCP

    Dimensions: (D,E, F)
  D : toroidal rank
  E : spans the gridpoints
  F : 7 gridpoint properties

SELECT DIM-REDUCE

    Dimensions: (D, E, F')
  D : toroidal rank
  E : spans the gridpoints
  F' : {perpendicular pressure}

    Dimensions: (D, E')
  E' : gridpoint number
  F' : perpendicular 
 pressures in each point

    Dimension: (E'')
  F'' : all perpendicular 
 pressures in the toroid

HISTOGRAM

Histogram of
perpendicular pressures
in the toroid

DIM-REDUCE

(GTCP output) (Work�ow output)
Fig. 6. GTCP Workflow

GROMACS

(GROMACS output)

   Dimensions: (D,E)
  D : spans the atoms
  E : {x, y, z}

MAGNITUDE

 1 dimension:
 [ |x0|, |x1|, |x2|, ... ]

HISTOGRAM

Histogram of |x|
(spread of atoms)

(Work�ow output)

Fig. 7. GROMACS Workflow

aprun −n 64 h i s t o g r a m v e l o s . fp 16 v e l o c i t i e s &
aprun −n 256 magni tude l m p s e l e c t . fp l m p s e l

v e l o s . fp v e l o c i t i e s &
aprun −n 256 s e l e c t dump . custom . fp atoms 1

l m p s e l e c t . fp l m p s e l vx vy vz &
aprun −n 1024 lammps < i n . c racksm &
w a i t

Fig. 8. SMARTBLOCK example launch script, LAMMPS workflow
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Fig. 9. GTCP workflow weak scaling experiment: Per-component, per-process
throughputs in KB/s.

B. Weak Scaling

Different workflows have different requirements in terms

of the data set sizes that they operate on and therefore on

the scales of their components. Thus, in order to use generic
components, it is important that the performance of the indi-

vidual components as well as the end-to-end performance of

the resulting workflow be reasonably predictable. To test this,

we ran a weak scaling experiment whose setup is described

in Table I. The table lists the process sizes and data set sizes

used in the 5 runs of the GTCP workflow for this experiment.

We measured the end-to-end times of these runs, as well as

the completion time of individual timesteps, broken down by

component, averaged over the component’s communicator.

These measurements allow us to extract an approximate

per-process throughput, both for the entire workflow, end-to-

end, as well as on a per-component basis. The last column in

Table I lists these end-to-end results, where the total data set

size produced by the simulation is divided by the total number

of processes used in the workflow and by the total time taken

by the workflow. Figure 9 shows similar per-component, per-

process throughputs for three of the components used in these

runs, for a timestep taken arbitrarily in the workflow. We can

see that while there is a certain variation in these throughputs

across the runs, especially at the largest scale, where com-

munication overhead is most significant, both SMARTBLOCK

workflows and their individual components exhibit very good

weak scaling properties, with a maximum throughput decrease

of about 57% between the two extremes in scale.

C. Comparing Generic and Ad Hoc Approaches

It is expected that assembling a workflow using generic

components involves the use of finer-grain components than
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TABLE I
GTCP-SMART BLOCK : WEAK SCALING EXPERIMENT SETUP , END-TO -END RESULTS

Run GTCP Output (MB) GTCP Procs Select Procs Dim-Red1 Procs Dim-Red2 Procs Histo Procs End2End Time (s) Throughput (KB/s)
1 918.3 64 10 6 6 2 92.72 112,541
2 1434.6 84 16 10 10 2 115.23 102,046
3 2065.6 156 18 14 14 4 97.27 103,089
4 2811.3 234 25 19 19 5 96.36 96,605
5 12905.4 1024 116 88 88 24 197.66 48,724

TABLE II
LAMMPS: SMARTBLOCK VS. ALL-IN-ONE COMPARISON

SIM output AIO time (sec) SMARTBLOCK

time (sec)
LMP only (sec)

20 MB 115.26 116.51 115.03
80 MB 148.70 149.80 146.97
320 MB 154.65 157.65 153.69
1280 MB 155.32 157.98 152.48
5120 MB 167.39 168.79 165.22

when using ad-hoc analytical routines specifically coded for a

workflow of interest. One problem that might be anticipated

in more componentized workflows is a decrease in overall

performance caused by (a) more stages that require the coor-

dination of readers and writers and (b) more points of actual

data transfer.

To investigate this potential problem, we wrote a custom,

all-in-one (AIO) component that performs the same analytical

procedure as all the components involved in the LAMMPS

workflow outside of the simulation itself. We measured the

start-to-end completion times of the two workflows at different

scales.

Table II shows the start-to-end completion times at increas-

ing scales, of (a) LAMMPS with the AIO component in the

second column (b) LAMMPS with the full SMARTBLOCK

workflow in the 3rd column and (c) the LAMMPS simulation

only with the output routines removed from the code in the

last column. The measurements in the last column are meant

to give an idea of the portion of the workflow completion time

taken up by the simulation computation only.

A weak scaling approach is used, with approximately the

same per-process data size throughout the scaling. The time

is measured from the start of the simulation to the point

when the last histogram of the last timestep is written. For

each SMARTBLOCK workflow run, the corresponding AIO

workflow run allocates the same number of processes to the

AIO component as the SMARTBLOCK workflow allocates

to the Select component. In the SMARTBLOCK workflow,

additional processes are allocated to the other two components

(Magnitude and Histogram).

The results show only a small increase in workflow comple-

tion time for the SMARTBLOCK workflows (with a maximum

increase of 1.9%). The componentized approach involves more

data exchange points in the workflow, thus leading to overhead

from increased MxN coordination and data exchange. How-

ever, the overlap of computation and I/O provided by FlexPath

amortizes this overhead.

Granted, slightly more resources are allocated to the

SMARTBLOCK workflow runs to allow the small number of

final components to execute (1280 processes used in total for
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Fig. 10. Magnitude strong scaling in the GROMACS workflow.

the AIO workflow vs. 1600 for the SMARTBLOCK workflow at

the largest scale). Also, much of the start-to-end time is spent

on the simulation’s computation. However, the measurements

in the last column of Table II only give an idea of the

proportion of overall time occupied by the simulation only,

since when workflows are running, there is much overlap in

the computation and I/O between the simulation and other

components. All in all, these results show that the fine-grained

component approach to assembling workflows is reasonable

from a performance standpoint.

D. Strong Scaling

To determine appropriate resources to use in workflow

runs, we run strong scaling experiments such as presented

in Figure 10, where only one component’s process size varies.

What we generally observe is expected: a linear domain of

scalability, followed by a turning point and eventual flattening

of the scaling curve. Figure 10 shows the linear domain of

the timestep completion time of the Magnitude component

in the GROMACS workflow; the process size of Magnitude

varies, with more processes used in the lower end of the chart,

and the process sizes of GROMACS and Histogram are kept

the same. Such experiments allow users to better determine

how to allocate resources to SMARTBLOCK workflows. While

limited space only allows us to present this sample result,

numerous results we have obtained from other components

and workflows show similar strong scaling characteristics.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents SMARTBLOCK, a demonstration of

making generic, reusable components for scientific workflows.

By using a stream-based pipeline and decomposing the op-

erations into small chunks, we achieve components that can

be reused, without modification, for a variety of different

workflows. These components handle data having any number

of dimensions and operate on various streams and arrays

passed to them at run time. Maintaining high level seman-

tics upstream, by labeling dimensions and certain quantities
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inside of these dimensions, gives good data understanding to

downstream components.

Through the demonstration of generating a velocity his-

togram for LAMMPS, a pressure histogram for GTCP, and

a distribution of the spread of the atoms for a GROMACS

experiment, we demonstrate reusing the same components over

different data formats and application types.

While this work leverages ADIOS and the FlexPath trans-

port, this is not the only approach for addressing reusable in

situ components. Other, similar approaches can also work.

However, in this case, the data annotation provided by this

infrastructure simplifies creating reusable components.

The components presented here are limited to in situ work-

flows with all components running simultaneously. However,

introducing new components that write and read from storage

as part of a workflow can break that dependency and are

a superficially simple addition. Future work will investigate

these challanges.

Other future work involves expanding the generic compo-

nents library to include a variety of other analytical operations.

In particular, the SMARTBLOCK components presented in this

paper result in an output dataset having either the same size

or a smaller size as the input. Analytical procedures that lead

to an increase in data size, such as all-pairs calculations, are

common and can be implemented using the SMARTBLOCK

approach.

To enrich SMARTBLOCK into a true Workflow Management

System, we hope to leverage ADIOS’ ability to have several

“write groups” so as to allow for the development of a Fork
component that would permit the creation of much richer

workflows described by directed acyclic graphs, such as those

used to evaluate [22]. And, to manage the execution of work-

flows over longer periods of time, we plan on investigating

the incorporation of SMARTBLOCK into higher-level workflow

management systems such as Kepler and DAGMan.

ACKNOWLEDGMENTS

The authors would like to thank Matthieu Dreher and

Tom Peterka from Argonne National Lab for their valuable

assistance with GROMACS and Pegasus.

This work was supported by the U.S. Department of Energy,

under FWP 15-017577 and DE-SC0016313, program manager

Lucy Nowell.

Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy’s National Nuclear Security Adminis-

tration under contract DE-AC04-94AL85000.

REFERENCES

[1] J. Lofstead, F. Zheng et al., “Adaptable, metadata rich IO methods
for portable high performance IO,” in Proceedings of the International
Parallel and Distributed Processing Symposium, Rome, Italy, 2009.

[2] J. Dayal, D. Bratcher et al., “Flexpath: Type-Based Publish/Subscribe
System for Large-scale Science Analytics,” in Cluster, Cloud, and Grid,
ser. CCGrid ’14. IEEE, 2014.

[3] McKesson, “Formfast,” 2016, http://formfast.com/platform/integrate/
ehr-integration/mckesson/.

[4] wfmc, “Workflow management coalition,” 2016, http://wwww.wfmc.
org/.

[5] S. J. Mullender, I. M. Leslie, and D. McAuley, “Operating-system
support for distributed multimedia,” in Proceedings of the 1994 Summer
USENIX Technical Conference, 1994, pp. 209–219.

[6] G. Malewicz, I. Foster et al., “A tool for prioritizing DAGMan jobs and
its evaluation,” High Performance Distributed Computing, 2006 15th
IEEE International Symposium on, pp. 156–168, 0-0 2006.

[7] M. Wilde, M. Hategan et al., “Swift: A language for distributed parallel
scripting,” Parallel Computing, vol. 37, no. 9, pp. 633–652, 2011.
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