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Abstract—This paper introduces PopperCI, a continous inte-
gration (CI) service hosted at UC Santa Cruz that allows re-
searchers to automate the end-to-end execution and validation of
experiments. PopperCI assumes that experiments follow Popper,
a convention for implementing experiments and writing articles
following a DevOps approach that has been proposed recently.
PopperCI runs experiments on public, private or government-
fundend cloud infrastructures in a fully automated way. We
describe how PopperCI executes experiments and present a use
case that illustrates the usefulness of the service.

I. INTRODUCTION

Independently validating experimental results in the field of
computer and networking systems research is a challenging
task [1,2]. Recreating an environment that resembles the
one where an experiment was originally executed is a time-
consuming endeavour [3,4]. Additionally, DOE’s Office of
Advanced Scientific Computing Research (ASCR) and the
National Science Foundation (NSF) have been recently stressing
the need of requiring grant proposals to include a section on
reproducibility, detailing how the research byproducts of a
computational project can be replicated [5].

Popper [6,7] is a convention for conducting experiments and
writing academic article’s following a DevOps [8] approach
that allows researchers to generate work that is easy to
reproduce. By following Popper, authors make experiment
artifacts available to readers, requiring only very high-level
instructions to re-execute experiments. While being Popper-
compliant doesn’t require projects to structure an experiment’s
artifacts in any particular way, organizing projects in the way it
is described here allows experimenters to make use of PopperCI,
a continuous integration (CI) service hosted at UC Santa Cruz
that allows researchers to automate the end-to-end execution
and validation of experiments. Popper is a convention (or
methodology) for generating articles, while PopperCI is a
service that ensures that the convention is followed.

In this paper we describe how PopperCI automates the
execution and validation of experiment implementations with-
out requiring manual intervention. Our contributions are: (1)
an organizational structure for Popper-compliant experiments
that serves as an interface to setup, execute and validate re-
executions; (2) PopperCI, a service that automates the end-to-
end execution of Popperized experiments; and (3) a use case
that illustrates the usefulness of PopperCI.

Figure 1: PopperCI automates the execution and validation of
experiments. Status of experiments is reported with badges.

The article is organized as follows. We first give a brief
description of the Popper convention (Section II-A) and how
experiment validations are codified (Section II-B). We then
describe PopperCI (Section III), followed by a use case
(Section IV). We close with a brief discussion and outline
for future work (Section VII).

II. POPPER AND EXPERIMENT VALIDATIONS

In this section we give a brief introduction to Popper [6,7], in
particular we look at how experiment validations are codified.

A. Popper

Popper revisits the idea of an executable paper [9,10],
which proposes the integration of executables and data with
scholarly articles to help facilitate its reproducibility. The goal
of Popper is to implement executable papers in today’s cloud-
computing world by treating an article as an open source
software (OSS) project. Popper is realized in the form of
a convention for systematically implementing the different
stages of the experimentation process following a DevOps [8]
approach (see Fig. 2). The convention can be summarized in
three high-level guidelines:

1. Pick a DevOps tool for each stage of the scientific
experimentation workflow.

2. Put all associated scripts (experiment and manuscript)
in version control, in order to provide a self-contained
repository.

3. Document changes as an experiment evolves, in the form
of version control commits.
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Figure 2: A generic experimentation workflow typically
followed by researchers in projects with a computational
component viewed through a DevOps looking glass. The
logos correspond to commonly used tools from the “DevOps
toolkit”. From left-to-right, top-to-bottom: Git, Mercurial,
Subversion (code); Vagrant, Spack, Nix (packaging); Git-LFS,
Datapackages, Artifactory, Archiva (input data); Bash, Puppet,
Slurm (execution); Git-LFS, Datapackages, Icinga, Nagios
(output data and runtime metrics); Jupyter, Zeppelin, Gephi
(analysis and visualization); RestructuredText, LATeX, Asciidoc
and Markdown (manuscript); GitLab, Bitbucket and GitHub
(experiment changes and labnotebook functionality).

By following these guidelines researchers can make all asso-
ciated artifacts publicly available with the goal of minimizing
the effort for others to re-execute and validate experiments.

B. Experiment Validations

One optional but important component in Popper is the
validation of experiments by explicitly codifying expectations.
These domain-specific tests ensure that the claims made about
the results of an experiment are valid after every re-execution.
An example of this is performance regression testing done in
software projects (e.g. ScalaMeter). In general, this can be
part of the analysis/visualization phase of the experimentation
workflow. To illustrate this stage further, consider an experiment
that measures the scalability of a system as the number of
nodes increases. An assertion to check this might look like the
on in Lst. 1.

Listing 1 Example validation in the Aver language.

WHEN
NOT network_saturated AND num_nodes=*

EXPECT
system_throughput >= (baseline_throughput * 0.9)

The above is written in the Aver1 [11] language and
expresses linear scalability with respect to the underlying
raw performance, i.e. “regardless of the number of nodes in
the system, its throughput is always at least 90% of the raw
performance”. The boolean value for network_saturated
comes from network metrics that are captured at runtime.
For example, some switches implement the SNMP protocol

1Aver is a language and tool that can be used to check the integrity of
runtime performance metrics that claims make reference to. The tool evaluates
simple if-then statements in SQL-like syntax against metrics captured in tabular
format files (e.g. CSV files).

that allows to identify if the network is getting saturated.
In general, for experiments in the computer and networking
systems research domain, most of the data that is used at
this stage comes from capturing runtime metrics about the
underlying resources. Monitoring tools such as Nagios and
collectd can be used for this purpose. Other examples of
this type of assertions are: “the runtime of our algorithm is 10x
better than the baseline when the level of parallelism exceeds
4 concurrent threads”; or “for dataset A, our model predicts
the outcome with an error of 5% at the 95 percent level of
confidence”.

III. POPPERCI

Following the Popper convention results in producing self-
contained experiments and articles, and reduces significantly the
amount of work that a reviewer or reader has to undergo in order
to re-execute experiments. However, it still requires manual
effort in order to re-execute an experiment. For experiments
that can run locally where the Popper repository is checked out
(e.g. not sensitive to variability of underlying hardware), this is
not an issue since usually an experiment is executed by typing
a couple of commands to re-execute and validate an experiment.
In the case of experiments that need to be executed remotely
(e.g. dedicated hardware), this is not as straight-forward since
there is a significant amount of effort involved in requesting
and configuring infrastructure.

The idea behind PopperCI is simple: by structuring a project
in a commonly agreed way, experiment execution and validation
can be automated without the need for manual intervention. In
addition to this, the status of an experiment (integrity over time)
can be tracked by the service hosted at http://ci.falsifiable.us.
In this section we describe the workflow that one follows in
order to make an experiment suitable for automation on the
PopperCI service. In the next section, we show a use case that
illustrates the usage with a concrete example.

A. Experiment Folder Structure

A minimal experiment folder structure for an experiment is
shown below:

Listing 2 Basic structure of a Popper repository.

$> tree -a paper-repo/experiments/myexp
paper-repo/experiments/myexp/
|-- README.md
|-- .popper.yml
|-- run.sh
|-- setup.sh
|-- validate.sh

Every experiment has setup.sh, run.sh and
validate.sh scripts that serve as the interface to
the experiment. All these return non-zero exit codes if there’s
a failure. In the case of validate.sh, this script should
print to standard output one line per validation, denoting
whether a validation passed or not. In general, the form
for validation results is [true|false] <statement>.
Examples are shown in Lst. 3.
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Listing 3 Example output of validations.

[true] algorithm A outperforms B
[false] network throughput is 2x the IO bandwidth

B. Special Subfolders

Folders named after a tool (e.g. docker or terraform)
have special meaning. For each of these, tests are executed
that check the integrity of the associated files. For example,
if we have an experiment that is orchestrated with Ansible,
the associated files are stored in an ansible folder. When
checking the integrity of this experiment, the ansible folder
is inspected and associated files are checked to see if they are
healthy. The following is a list of currently supported folder
names and their CI semantics (support for others is in the
making):

• docker. An image is created for every Dockerfile.
• ansible. YAML syntax is checked.
• datapackages. Availability of every dataset is checked.
• vagrant. Definition of the VM is verified.
• terraform. Infrastructure configuration files are

checked by running terraform validate.
• geni. Test using the omni validate command.
By default, when a check invokes the corresponding tool,

PopperCI uses the latest stable version. If another version is
required, users can add a .popper.yml file to specify this
(Lst. 2).

C. CI Functionality

Assuming users have created an account at the PopperCI
website and installed a git hook in their local repository, after
a new commit is pushed to the repository that stores the
experiments, the service goes over the following steps:

1. Ensure that every versioned dependency is healthy.
For example, ensure that external repos can be cloned
correctly.

2. Check the integrity of every special subfolder (see
previous subsection).

3. For every experiment, trigger an execution (invokes
run.sh), possibly launching the experiment on remote
infrastructure (see next section).

4. After the experiment finishes, execute validations on the
output (invoke validate.sh command).

5. Keep track of every experiment and report their status.
Once an experiment has been successfully validated by

PopperCI, it becomes push-button repeatable. If an experiment
has been made public, other users can re-execute it instantly,
assuming they have an account at the PopperCI website
with the appropriate credentials on the platform where the
experiment originally executed (e.g. authentication certificates
for CloudLab).

D. Experiment Execution

Experiments that run on remote infrastructure specify any
preparation tasks in the setup.sh script. For example, an

Figure 3: PopperCI dashboard showing the status of every
experiment for every commit.

experiment can leverage Terraform to initialize the resources
required to execute. In this case, an special terraform/
folder contains one or more Terraform configuration files
(JSON-compatible, declarative format) that specify the in-
frastructure that needs to be instantiated in order for the
experiment to execute. The run.sh script assumes that there
is a terraform.tfstate folder that contains the output
of the terraform apply command. For example, this
folder contains information about whether all the nodes in
an experiment have initialized correctly.

Terraform is a generic tool that initializes infrastructure in a
platform-agnostic way by interposing an abstraction layer that
is implemented using platform-specific tools. When a plugin
for a particular infrastructure is not available, one can resort to
using platform-specific tools directly. For example CloudLab
[12] and Grid500K [13] have a set of CLI tools that can be
used to manage the request of infrastructure. In general, any
tool that fits in this category that has a command line interface
(CLI) tool available can be used to automate this process.

E. PopperCI Dashboard

The PopperCI website, once users have logged in, shows the
status of the experiments for their projects. For each project,
there is a table that shows the status of every experiment, for
every commit (Fig. 3).

There are three possible statuses for every experiment: FAIL,
PASS and GOLD. Clicking an entry on the above table shows
a validations sub-table with two columns, validation
and status, that shows the status for every validation. There
are two possible values for the status of a validation, FAIL or
PASS. When the experiment status is FAIL, this list is empty
since the experiment execution has failed and validations are
not able to execute at all. When the experiment status is GOLD,
the status of all validations is PASS. When the experiment
runs correctly but one or more validations fail (experiment’s
status is PASS), the status of one or more validations is FAIL.

PopperCI has a badge service that projects can include in
the README page of a project on the web interface of the
version control system (e.g. GitHub). Badges are commonly
used to denote the status of a software project, e.g. whether
the latest version can be built without errors, or the percentage
of code that unit tests cover (code coverage). Badges available
for Popper are shown in Fig. 1 (step 6).

F. Popper CLI

Researchers that decide to follow Popper are faced with
a steep learning curve, especially if they have only used a
couple of tools from the DevOps toolkit. To lower the entry
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barrier, we have developed a CLI tool to help bootstrap a paper
repository that follows the Popper convention and that makes
use of PopperCI. The CLI tool can list and show information
about available experiments (Lst. 4).

Listing 4 Initialization of a Popper repo.

$ cd mypaper-repo
$ popper init
-- Initialized Popper repo

$ popper experiment list
-- available templates ---------------
ceph-rados proteustm mpi-comm-variability
cloverleaf gassyfs zlog
spark-standalone torpor malacology

$ popper experiment add ceph-rados

By default, the tool takes examples from the of-
ficial Popper repository but other repositories contain-
ing Popperized experiments can be queried by passing
the --popper-templates-repo flag to the popper
experiment command. This is useful in cases where the
associated repository is not public.

The Popper CLI can also be used to trigger an end-to-end
execution (locally in the user’s machine) of an experiment via
the popper check command. Additionally, the popper
binary also contains all the dependencies to launch a self-hosted
PopperCI instance via the popper service command.

IV. USE CASE

We show an experiment being seamlessly executed on
multiple platforms. The experiment measures the overhead
of Redis, an in-memory key-value store, with respect to
the raw memory bandwidth available in a machine. Due to
space limitations we leave out the details of the setup but
refer the reader to the Popper repository for this paper at
https://github.com/systemslab/popperci-paper.

This experiment makes use of Docker for packaging the soft-
ware stack, Ansible to orchestrate the logic of the experiment,
Aver to verify the output of the experiment and Terraform/geni-
lib to specify the resources needed to execute an experiment.
When a new commit is pushed to the main branch of this
paper repository, a git hook registered at GitHub triggers the
execution of the experiment at PopperCI. As mentioned earlier,
before the experiment executes, basic checks on the experiment
artifacts are executed: Docker images are built, Ansible scripts’
syntax is checked and Terraform/GENI configuration files are
sanitized.

Terraform’s DSL allows to succinctly specify the resources
that an experiment needs. An example of how this is specified
is shown below (Lst. 5). We have as many of these resource
specifications as nodes in an experiment. The resource request
for CloudLab uses the Python geni-lib library (Lst. 6).

In Fig. 4 we show results of executing the Redis benchmark
(the SET test in particular) on three different platforms: an
on-premises cluster (UC nodes), DigitalOcean (DO nodes) and
CloudLab (CL nodes). The y axis shows the slowdown of Redis

Figure 4: Redis benchmark (SET test) results. Source:
http://bit.ly/2mARd8L

w.r.t. STREAM. A value of 1 for machine X means that, in
machine X, while STREAM can process 1000 MB/s, Redis
processes data at a rate of 1 MB/s. Thus, this graph shows
Redis’ overhead being within a conservative range of [2.5, 4].
Black lines denote standard deviation (n = 3).

Listing 5 Terraform configuartion for requesting a Droplet.

resource "digitalocean_droplet" "web" {
image = "docker-ubuntu-16-04-x64"
name = "node1"
region = "sf2"
size = "16gb"

}

The output dataset for this experiment is in tabular format
with two columns machine and slowdown. Thus, the
condition that Aver will check on subsequent executions is
the following: WHEN machine=* EXPECT slowdown
BETWEEN(2.5, 4).

We note that, for the purposes of this paper, while the
performance numbers obtained are relevant, they are not our
main focus. Instead, we put more emphasis on how we can
reproduce results on multiple environments with minimal effort,
and how we can verify the outcome of re-executions.

Listing 6 Python script for requesting a node on CloudLab.

import geni.portal as portal
import geni.rspec.pg as rspec
request = portal.context.makeRequestRSpec()
node1 = request.RawPC("node1")
node1.disk_image = "urn:publicid:IDN+image//UBUNTU16-64-STD"
portal.context.printRequestRSpec()

V. DISCUSSION

A. A Shift in Experimentation Paradigms

Traditional experimentation practices are deeply rooted in
the muscle memory of researchers, typing commands in “live”
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systems and getting results as they go. Popper (and more
generally DevOps) puts an emphasis on versioning every
dependency, from infrastructure to any asset required by an
execution, with the goal of executing pipelines by providing a
list of these versioned artifacts to DevOps tools. In the DevOps
world, this is referred to as having “infrastructre-as-code” and
basically “anything-as-code” [14]. In practice, this means typing
commands in a script file, instead of directly on the CLI, and
letting automation tools execute them. By using the PopperCI
service (or the popper check command of the CLI tool)
researchers can force themselves to create the habit of gener-
ating Popper-compliant experiments. Additionally, PopperCI
incentivizes researchers to follow Popper by providing badges
that denote a “reproducibility stamp” that they can refer to as
proof of producing reproducible work.

B. Making the Cloud Research-friendly

Shared infrastructures “in the cloud” are becoming the norm
and enable new kinds of sharing, such as experiments, that were
not practical before. NSF- and DOE-funded infrastructures
are a great asset for researchers to use, the opportunity
of these services goes beyond just economies of scale: by
using conventions and tools to enable reproducibility, we can
dramatically increase the value of scientific experiments for
education and for research. PopperCI repurposes the DevOps
practice for hypothesis-driven, research-oriented projects, with
the goal of having the same simplicity and level of maturity
as existing DevOps tools and services.

C. Popperized Experiments as Experiment Packages

Our vision is that, over time, as more experiments become
“Popperized” and aggregated in the form of Popper template
repositories, these can become analogous to software packages
that are currently used in the open source software community.
With such a list of experiments for a particular community,
these experiments then can be indexed so that when a student or
researcher looks for preliminary work, they can get to existing,
reproducible experiments that they can use as the basis of their
work.

D. Repeatability and Replicability

The ACM policy on Artifact Review and Badging2 introduces
the definition of Repeatability and Replicability for academic
articles. PopperCI enables the automatic verification of these
designations. Since the PASS badge denotes that an experiment
was re-executed without errors, this means that an experiment is
repeatable. If the results of an experiment are valid (PopperCI
GOLD badge), and the experiment was executed “by a person or
team other than the authors”, then results have been replicated.

E. Statistical Studies vs. Controlled Environments

Almost all publications about systems experiments under-
report the context of an experiment, making it very difficult
for someone trying to reproduce the experiment to control for
differences between the context of the reported experiment

2https://www.acm.org/publications/policies/artifact-review-badging

and the reproduced one. Due to traditional intractability of
controlling for all aspects of the setup of an experiment systems
researchers typically strive for making results “understandable”
by applying sound statistical analysis to the experimental
design and analysis of results [4]. The Popper Convention and
PopperCI make controlled experiments practical by managing
all aspects of the setup of an experiment and leveraging shared
infrastructure. By providing performance profiles alongside
experimental results, this allows to preserve the performance
characteristics of the underlying hardware that an experiment
executed on and facilitates the interpretation of results in the
future.

F. Limitations

One of the main limitations for PopperCI is that it requires
users to know at least one tool of the DevOps toolkit for
each stage of the generic experimentation workflow. While
this learning curve is steep, having these as part of the
skillset of students or researchers-in-training can only improve
their curriculum. Since industry and many industrial/national
laboratories have embraced a DevOps approach (or are in the
process of embracing), making use of these tools improves their
prospects of future employment. Similarly, the implementation
of these processes requires a cultural change for organizations
that want to embrace these new approaches.

VI. RELATED WORK

TravisCI is a hosted CI service that allows open source
projects on GitHub to connect their work. We strive to have
the same simplicity of Travis by choosing “convention over
configuration”. Jenkins is an open source automation server
most commonly used for CI. Additionally, other domain-
specific frameworks exist [15]. PopperCI strikes a middle
ground: it can be seen as an specialization of generic CI tools
and services; at the same time, by having experiments and
validations as “first-class citizens” in the CI cycle, PopperCI
targets research communities in a domain-agnostic way.

Current experimental practices include the usage of hosted
version-control systems to share the source code associated to
an experiment. However, availability of source code does not
guarantee reproducibility [3]. An alternative to sharing source
code is experiment repositories [16] which, due to the lack
of common organizational structures for artifacts (no common
experimentation workflow), do not solve the issues of validating
reproducibility. Another approach is to pack experiments by
tracing, at runtime, dependencies and generating a package
that can be shared with others [17]. The Popper Convention
and PopperCI can be seen as a superset of all these approaches
since it embodies all the different stages of the experimentation
process.

VII. CONCLUSION AND FUTURE WORK

By making use of PopperCI, researchers can ensure that their
work is reproducible, making it easier to share and collaborate
with others. We are currently working with researchers from
other domains such as numeric weather prediction [18] and
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mathematical sciences [19] to automate experiments that follow
the Popper convention so that they can make use of PopperCI.

While Popper and PopperCI facilitate the re-execution of
experiments, they cannot serve for identifying causes of irre-
producibility. An open problem is to automate the identification
of root causes of irreproducibility, either from changes made
to an experiment or from changes in the environment. An even
more challenging problem is how to automatically “fix” an
experiment, once the cause for differences has been found.
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