
Demo Abstract: PopperCI: Automated
Reproducibility Validation

Ivo Jimenez
UC Santa Cruz

ivo@cs.ucsc.edu

Sina Hamedian
UC Santa Cruz

sina@ucsc.edu

Jay Lofstead
Sandia National Laboratories
gflofst@sandia.gov

Carlos Maltzahn
UC Santa Cruz

carlosm@cs.ucsc.edu

Kathryn Mohror
Lawrence Livermore National Laboratory

kathryn@llnl.gov

Remzi Arpaci-Dusseau
UW Madison

remzi@cs.wisc.edu

Andrea Arpaci-Dusseau
UW Madison

dusseau@cs.wisc.edu

Robert Ricci
University of Utah

ricci@cs.utah.edu

In this demo we illustrate the usage of PopperCI [1], a
continous integration (CI) service for experiments hosted at UC
Santa Cruz that allows researchers to automate the end-to-end
execution and validation of experiments. PopperCI assumes that
experiments follow Popper [2], a convention for implementing
experiments and writing articles following a DevOps approach
that has been proposed recently.

I. POPPER, EXPERIMENT VALIDATIONS AND POPPERCI

A. Popper

Popper [2] revisits the idea of an executable paper, which
proposes the integration of executables and data with scholarly
articles to help facilitate its reproducibility. The goal of Popper
is to implement executable papers in today’s cloud-computing
world by treating an article as an open source software
(OSS) project. Popper is realized in the form of a convention
for systematically implementing the different stages of the
experimentation process following a DevOps [3] approach. The
convention can be summarized in three high-level guidelines:

1. Pick a DevOps tool for each stage of the scientific
experimentation workflow.

2. Put all associated scripts (experiment and manuscript)
in version control, in order to provide a self-contained
repository.

3. Document changes as experiment evolves, in the form
of version control commits.

By following these guidelines researchers can make all asso-
ciated artifacts publicly available with the goal of minimizing
the effort for others to re-execute and validate experiments.

B. Experiment Validations

One optional but important component in Popper is the
validation of experiments by explicitly codifying expectations.
These domain-specific tests ensure that the claims made about
the results of an experiment are valid after every re-execution.
An example of this is performance regression testing done in
software projects (e.g. ScalaMeter). In general, this can be
part of the analysis/visualization phase of the experimentation
workflow. To illustrate this stage further, consider an experiment

Figure 1: The continous integration (CI) PopperCI service
automates the execution and validation of experiments that run
on public, private or government-funded cloud infrastructures.
The status of an experiment execution is reported at http:
//ci.falsifiable.us.

that measures the scalability of the system as the number of
nodes increases. One assertion might be like the following:

Listing 1 Example validation in the Aver language.

WHEN
NOT network_saturated AND num_nodes=

*

EXPECT
system_throughput >= (baseline_throughput

*

0.9)

The above is written in the Aver1 [4] language and expresses
linear scalability with respect to the underlying raw perfor-
mance, i.e. “regardless of the number of nodes in the system,
its throughput is always at least 90% of the raw performance”.
The boolean value for network_saturated comes from
network metrics that are captured at runtime. For example,
some switches implement the SNMP protocol that allows to
identify if the network is getting saturated. In general, for
experiments in the computer and networking systems research
domain, most of the data that is used at this stage comes
from capturing runtime metrics about the underlying resources.
Monitoring tools such as Nagios and collectd can be used

1Aver is a language and tool that can be used to check the integrity of
runtime performance metrics that claims make reference to. The tool evaluates
simple if-then statements in SQL-like syntax against metrics captured in tabular
format files (e.g. CSV files).

2017 IEEE Conference on Computer Communications Poster and Demo (INFOCOM'17 Poster/Demo)

978-1-5386-2784-6/17/$31.00 ©2017 IEEE 952

for this purpose.

C. PopperCI

Following the Popper convention results in producing self-
contained experiments and articles, and reduces significantly
the amount of work that a reviewer or reader has to undergo
in order to re-execute experiments. However, it still requires
manual effort in order to re-execute an experiment. The idea
behind PopperCI is simple: by structuring a project in a
commonly agreed way, experiment execution and validation
can be automated without the need for manual intervention.
Experimenters that follow this structure can make use of
PopperCI, a continuous integration (CI) service hosted at UC
Santa Cruz that allows researchers to automate the end-to-
end execution and validation of experiments. PopperCI runs
experiments on public, private or government-fundend cloud
infrastructures in a fully automated way. In addition to this,
the status of an experiment (integrity over time) can be tracked
by the service hosted at http://ci.falsifiable.us.

II. DEMO

The goal of this demo is to illustrate the usefulness of
PopperCI and the ease with which users trigger experiment
executions. The audience will be guided through a practical
example of how to implement a Popper-compliant experiment
and how they can use PopperCI. We will walk them through the
steps that are required to implement an experiment following
the Popper convention, and how they can trigger experiments
on multiple clouds by using PopperCI (we will show a step-
by-step execution of the diagram in Fig. 1).

This demo consists of a multi-node experiment being
seamlessly executed on two clouds (DigitalOcean and Cloud-
Lab). The experiment is a distributed machine learning (ML)
benchmark on Spark. Due to space limitations we leave out the
details of the setup but refer the reader to the Popper repository
for this paper at https://github.com/ivotron/popperci-paper. The
main goal of the experiment is to test a simple hypothesis:
doubling the number of cores that each Spark worker has
available to it should reduce the amount of time it takes to
execute the ML benchmark.

This experiment makes use of Docker for packaging the
software stack, Ansible to orchestrate the logic of the ex-
periment, Aver to verify the output of the experiment and
Terraform/GENI to specify the resources needed to execute
an experiment. When a new commit is pushed to the main
branch of this paper repository, a git hook registered at GitHub
triggers the execution of the experiment at PopperCI. Before the
experiment executes, basic checks on the experiment artifacts
are executed: Docker images are built, Ansible scripts’ syntax is
checked and Terraform/GENI configuration files are sanitized.

Terraform’s DSL allows to succinctly specify the resources
that an experiment needs. In this case, we request 6 machines
with the same characteristics. An example of how this is
specified is shown in Lst. 2. We have as many of these node
specifications as nodes in the experiment (6 in this case). The

resource request for CloudLab uses the GENI API and looks
a bit similar (Lst. 3).

Listing 2 Terrform configuartion for requesting a Droplet.

resource "digitalocean_droplet" "web" {
image = "docker-ubuntu-16-04-x64"

name = "node1"

region = "sf2"

size = "16gb"

}

Listing 3 CloudLab script for requesting a node.

import geni.portal as portal

import geni.rspec.pg as rspec

request = portal.context.makeRequestRSpec()

node1 = request.RawPC("node1")

node1.disk_image = "urn:publicid:IDN+image//UBUNTU16-64-STD"

portal.context.printRequestRSpec()

The output dataset for this experiment is in tabular format
with two columns num_workers and runtime. The condi-
tion that is checked for this experiment is the following:

Listing 4 Validation for this use case.

EXPECT

runtime(num_workers=8) < runtime(num_workers=4)

We note that while the performance numbers obtained are
relevant, they are not our main focus. Instead, we put more
emphasis on how we can verify domain-specific validations,
how we can reproduce results on multiple environments with
minimal effort, and how we can ensure the validity of the results.
This demo will show how PopperCI allows experimenters to
execute on multiple clouds and corroborate claims about their
systems on distinct platforms.

III. BIBLIOGRAPHY

[1] I. Jimenez, S. Hamedian, J. Lofstead, C. Maltzahn, K.
Mohror, R. Arpaci-Dusseau, A. Arpaci-Dusseau, and R.
Ricci, “PopperCI: Automated Reproducibility Validation,”
Proceedings of CNERT ’17, 2017.

[2] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead,
K. Mohror, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“Standing on the Shoulders of Giants by Managing Scientific
Experiments Like Software,” USENIX; login, vol. 41, Nov.
2016.

[3] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps
Handbook, O’Reilly Media, 2016.

[4] I. Jimenez, C. Maltzahn, J. Lofstead, A. Moody, K. Mohror,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “I Aver: Pro-
viding Declarative Experiment Specifications Facilitates the
Evaluation of Computer Systems Research,” TinyToCS, vol.
4, 2016.

2017 IEEE Conference on Computer Communications Poster and Demo (INFOCOM'17 Poster/Demo)

953

