
Characterizing and Reducing Cross-Platform
Performance Variability Using OS-level

Virtualization

Ivo Jimenez and Carlos Maltzahn
UC Santa Cruz

{ivo,carlosm}@cs.ucsc.edu

Jay Lofstead
Sandia National Laboratories
gflofst@sandia.gov

Adam Moody and Kathryn Mohror
Lawrence Livermore National Laboratory
{moody20,kathryn}@llnl.gov

Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau
University of Wisconsin-Madison

{remzi,dusseau}@cs.wisc.edu

Abstract—Independent validation of experimental results in
the field of parallel and distributed systems research is a challeng-
ing task, mainly due to changes and differences in software and
hardware in computational environments. In particular, when
an experiment runs on different hardware than the one where
it originally executed, predicting the differences in results is
difficult. In this paper, we introduce an architecture-independent
method for characterizing the performance of a machine by
obtaining a profile (a vector of microbenchark results) that we
use to quantify the variability between two hardware platforms.
We propose the use of isolation features that OS-level virtual-
ization offers to reduce the variability observed when validating
application performance across multiple machines. Our results
show that, using our variability characterization methodology,
we can correctly predict the variability bounds of CPU-intensive
applications, as well as reduce it by up to 2.8x if we make use of
CPU bandwidth limitations, depending on the opcode mix of an
application, as well as generational and architectural differences
between two hardware platforms.

I. INTRODUCTION

A key component of the scientific method is the ability to

revisit and reproduce previous experiments. Reproducibility

also plays a major role in education since a student can

learn by looking at provenance information, re-evaluate the

questions that the original experiment answered and thus “stand

on the shoulder of giants”. In the wide field of computer

systems research, the issues of reproducibility manifest when

we validate system performance. In order to validate a claim,

we need to show that the system performs as stated, possibly

in a variety of different scenarios.

When evaluating system performance, multiple variables

need to be accounted for; among them are source code changes,

compilation and application configuration, as well as workload

properties and hardware characteristics. A rule of thumb while

executing experiments is: across multiple runs, modify only

one variable at a time so that correlation can be accurately

attributed to the right variable. Generally, properly enumerating

all the environment variables in the software stack is an

arduous endeavour; adding hardware to the mix makes it all

but impractical since predicting the differences in results that

originate when we vary the hardware “variable” is a challenging

task. Ideally, given two particular hardware setups, we would

like to have a quantifiable expectation of the performance

variability for any application running on these machines. That

is, if we execute an application on one machine and then execute

it on another one, we would like to bound the variability (i.e. the

performance range) that any application running on the former

would observe when executed on the latter.

In this work, we initially focus on single-node performance

variability, since it is the fundamental building block in

distributed and parallel settings. We introduce an architecture-

independent method for characterizing the performance of a

machine by obtaining a profile (a vector of microbenchark

results) that we use to quantify the variability between two

hardware platforms. We show this can correctly predict the

variability bounds of CPU-intensive applications. We also

investigate OS-level virtualization as a way of reducing the

expected variability over executions of applications on distinct

platforms. OS-level virtualization offers several features for

reproducing system performance. While core affinity and

memory/swap size limitations have been shown to bring

stability across executions in one single system [1], the use

of CPU bandwidth limitations can reduce the variability for

executions across different platforms. Our experiments show

that using CPU bandwidth limitation reduces performance

variability by up to 2.8x, depending on the opcode mix of an

application, as well as generational and architectural differences

between two hardware platforms.

II. OS-LEVEL VIRTUALIZATION

OS-level virtualization is a method where the kernel of an

OS allows for multiple isolated user spaces, instead of just

one. Such instances (often called containers, virtual private

servers (VPS), or jails) may look and feel like a real server

from a user’s point of view. In the remaining of this paper

we focus on Docker [2], which employs Linux’s cgroups and

namespaces features to provide OS-level virtualization. While

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.97

1077

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5090-3682-0/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.97

1077

our discussion is centered around cgroups, the overall strategies

can be applied to any of the others.

A. CPU Bandwidth Throttling

Linux’s cgroups is a unified interface to the operating

system’s resource management options, allowing users to

specify how the kernel should limit, account and isolate usage

of CPU, memory, disk I/O and network for a collection of

processes. In our case, we’re interested in the CPU bandwidth

limiting capabilities. cgroups exposes parameters for the

Completely Fair Scheduler (CFS). The allocation of CPU for a

group can be given in relative (shares) or absolute (period
and quota) values. Figure 11 shows the effect that multiple

values for quota have on the execution of a CPU-bound

process.

B. Limitations of Throttling

While absolute CPU bandwidth limitations work well

to isolate processes within a single system, they are not

guaranteed to be as effective to reproduce performance across

multiple platforms and multiple applications, i.e. finding a

value of quota on a target machine that would reproduce the

performance observed in a base one. The main reason being

that fundamental differences between two machines (e.g. CPU

and memory bandwidth) make it practically impossible to find

a single value for quota that works for every application.

One can find quota/period values that reproduce results for a

particular application, but these values won’t work for another

application with a different opcode mix.

III. CHARACTERIZING PERFORMANCE VARIABILITY

Quantifying performance variability across hardware plat-

forms entails characterizing the performance of single machines.

While the hardware and software specification can serve to

describe the attributes of a machine, the real performance

characteristics can only feasibly2 be obtained by executing

programs and capturing metrics at runtime. So the question

boils down to which programs should we use to characterize

performance? Ideally, we would like to have many programs

that execute every possible opcode mix so that we measure

their performance. Since this is an impractical solution, an

alternative is to create synthetic microbenchmarks that get as

close as possible to exercising all the available features of a

system.

stress-ng is a tool that is used to “stress test a computer

system in various selectable ways. It was designed to exercise

various physical subsystems of a computer as well as the

various operating system kernel interfaces”. There are multiple

stressors for CPU, CPU cache, memory, OS, network and

filesystem. Since we focus on CPU bandwidth, we look at

1Throughout this article, we include a source URL for each figure that
links to a github page corresponding to the source code of the experiment that
generated this graph.

2One can get real performance characteristics by interposing a hardware
emulation layer and deterministically associate performance characteristics
to each instruction based on specific hardware specs. While possible, this is
impractical.

Fig. 1. [source] Boxplots of runtimes of the crafty benchmark for multiple
values of cpu quota (with a fixed period of 100 microseconds) illustrating the
effect of limiting CPU access for a single-threaded process. Every boxplot
summarizes 10 executions (interquartile box is tight and overlaps with the
median).

the CPU “stressor”, which is a routine that loops a function

(termed CPU method) multiple times and reports the rate of

iterations executed for a determined period of time (referred to

as bogo-ops-per-second). As of version 0.05.09, there

are 68 CPU methods that range from bitwise, control flow and

floating/integer operations on multiple word sizes.

Using this battery of CPU stressors, one can obtain a profile

of CPU performance for a machine. When this profile is

normalized against the profile of another machine, we obtain

a variability profile that characterizes the speedups/slowdowns

of a machine B with respect to another one A. We refer to this

profile as the variability profile for B/A (or the B/A profile

for brevity). Figure 2 shows a histogram (in green) of the

variability profile of two machines for all the CPU stressors of

stress-ng. The purple histogram is discussed in Section V.
Given an application, at the hardware level, variability

can originate from mainly two sources: hardware generation

and major architecture. While it is possible to analyze the

performance variation that presents when going from new

(faster) to old (slower) architectures, in this work we focus

on the opposite (old to new). We believe this is a reasonable

assumption since this is the nature of technology advances

and mimics the scenario that researchers go through while

attempting to reproduce published experiments. Also, we only

look at x86_64 and, as shown in Section V, we vary between

AMD and Intel implementations of this ISA.

IV. REDUCING PERFORMANCE VARIABILITY

We now present a methodology that leverages the CPU

bandwidth limitation feature of OS-level virtualization to reduce

the variability range of performance across distinct hardware

platforms. When reproducing performance of an application

on a target machine T that originally ran on a base machine

B, we propose the following calibration methodology:

1. Execute microbenchmarks on B that characterize the

underlying hardware platform.

2. Manipulate absolute cgroup values for the CFS on target

machine T in such a way that the performance of

10781078

microbenchmarks is as close as possible to the results

from machine B; a configuration Ct is obtained.

3. Apply the configuration Ct on machine T and execute the

application, which should observe reduced performance

variability when compared against the unconstrained

execution on T .

If the original execution of the application on base machine

B was itself being constrained, then this configuration Cb

should be applied in step 1. While we believe this methodology

applies to many scenarios, we currently have tested it on single-

threaded and non-collocated workloads (see Results section).

A. Tuning The Target Machine

Finding the values of CPU bandwidth (step 2) is done via

program auto-tunning for one or more microbenchmarks that

characterize the performance of the underlying hardware. At

every execution step, a docker container is instantiated and

constrained with a value for CPU quota. It is reasonable to

assume that the performance of CPU with respect to quota

allocations resembles a monotonically decreasing function

as shown in Figure 1, thus, we can select a random value

within the valid tunable range (or alternatively the highest)

and climb/descend until we get to the desired performance

for the microbenchmark(s) on the target machine. When

multiple microbenchmarks are executed their results need to

be aggregated (e.g. by taking a weighted average of a speedup

metric).

The tuning methodology assumes that the machine where

an application is being ported to is relatively more powerful

that the one were an application originally ran. When this

assumption does not hold, one can resort to constraining the

original execution (i.e. generating a Cb for B).

V. RESULTS

In this section we show the effectiveness of our proposed

methodology (Section V.A) by obtaining the variability profile

for a target machine with respect to a baseline; we do so by

visualizing the reduction of the variability range when we apply

the mapping methodology (Section IV) to the target. We then

study the effects of this reduction by executing a variety of

benchmarks on the same platforms (Section V.B). Due to space

constraints we omit the detailed description of our experimental

setup3. We have one target machine T (2012 Xeon E5-2630)

whose performance is being characterized with respect to a

base machine B (2006 Xeon E5-310). The reason for selecting

a relatively old machine as our baseline is two-folded. First,

by picking an old machine we ensure that the target machines

can outperform the base machine in every test of stress-ng.
Secondly, having an old computer as part of the our study

resembles the scenario that many researchers face while trying

to reproduce results found in the literature.

3For a complete description please refer to the repository of this article at
https://github.com/ivotron/varsys16.

Fig. 2. [source] Histograms for two variability profiles. Each measurement
in a histogram corresponds to the performance speedup/slowdown of a
stress-ng CPU method that a machine has with respect to another one.
For example, in the T/B histogram (green), the architectural improvements
of machine T cause 11 stressors to have a speedup within the (2.3, 2.4]
range over machine B.

A. Reduction of Variability Range

Comparing the range of two histograms illustrates the

differences in performance variability for a pair of machines.

Perfect performance reproducibility of results would result in

having the performance of every benchmark to be in x = 1.0.
As mentioned before (Section II.B), fundamental differences

between two machines such as CPU, memory, micro-controllers

and BIOS configuration make it practically impossible to have

perfect reproducibility between two platforms.

Yet, reducing the performance variability (shrinking the range

around x = 1.0) is an attainable goal. The green histogram in

Figure 2 corresponds to variability profile T/B. The purple

one corresponds to the variability profile of T after being

constrained using the tuning methodology from Section IV.
We denote this profile as T ′/B. In this particular case, tuning

resulted in a CPU quota of 6372 microseconds for a period

of 10000 microseconds. When these bandwidth limitations are

in place, the variability range is reduced from [1.65, 7.10] to
[0.60, 2.54], i.e. from a range of length 5.45 to one of size

1.94, a ~2.8x reduction.

We make two main observations about Figure 2. First, more

than 50% of the data points cluster around the [0.78, .98] range
(with 88 as the median), while ~25% around the [0.83, 0.93]
range (not shown) for the limited case (purple histogram). In the

unconstrained case (green), the median is 2.48 (mean is 2.70),

with a long tail towards the higher speedup values. Secondly,

while 6372 represents ~63% of CPU time, the range shrinks

only by ~50%. As shown in Figure 1, this is mainly due to the

non-linear behavior of CPU performance under different loads.

An open question is whether the same performance variability

would be observed at the hardware level by using dynamic

frequency scaling.

B. Validation of Variability Characterization

Assuming stress-ng’s distinct CPU methods represent

a realistic coverage of the multiple physical features of a

processor, we can reasonably assume that the performance

of applications with and without constrained CPU bandwidth

will land within the range obtained by our variability char-

acterization profiles introduced in Section III. In order to

10791079

Fig. 3. [source] Histogram for T/B and T ′/B profiles. Measurements
come from the following benchmarks: STREAM, cloverleaf-serial,
comd-serial, sequoia (amgmk, crystalmk, irsmk),
c-ray, crafty, unixbench, stress-ng (string, matrix, memory
and cpu-cache). Vertical lines denote the limits of the predicted variability
range (Figure 2), obtained from executing stress-ng CPU stressors. Points
outside the predicted line correspond to STREAM. The rightmost point for the
unconstrained (green) histogram is not shown to improve the readability of
the figure; it lies on the 14x bin.

corroborate this hypothesis, we executed 66 benchmarks with

and without CPU bandwidth limitations on the target system.

Every benchmark on this and the previous section was executed

on the base and target systems in docker containers. In order to

minimize the variability that might originate from distinct

compiler optimizations we disable compiler optimizations

(gcc’s -O0 flag). Also, as mentioned previously, these are

single-threaded processes running in uncontended systems; our

goal is to generate bounded performance rather than perfect

reproducibility (Section V.B).
Figure 3 shows the results of our tests for both unconstrained

(green; T/B profile) and unconstrained (purple; T ′/B profile)

scenarios. Each point on a histogram corresponds to one

benchmark. The two vertical lines denote the variability range

obtained from Figure 2. For the constrained case (purple), with

the exception of one point, all executions land within the pre-

dicted range. We also observe that while the highest value of the

range obtained in the previous section (rightmost vertical purple

line) is in the 2.6x bin, the performance of 64 out of 66 never

go above the smaller [0.6−1.6] range. In the case of executions

without limits (green histogram), we observe 2 points going

out of the predicted range, the one at [1.5− 1.6] and another

(not shown) at 14x, both corresponding to memory-bound

benchmarks (stress-ng-memory-malloc and STREAM,
respectively).

From the analysis of the variability profiles for these 66

benchmarks, we can conclude that the set of stress-ng
microbenchmarks are good representatives of CPU performance

and thus they can serve to characterize a machine for CPU-

intensive workloads. Also, the variability profile seems to be a

good performance predictor, i.e. an execution lies within the

determined speedup/slowdown range.

VI. RELATED WORK

The challenging task of evaluating experimental results

in applied computer science has been long recognized [3],

where the focus is more on numerical reproducibility rather

than performance evaluation. In systems research, runtime

performance is the subject of study, thus we need to look at it

as a primary issue.

The closest work to our approach is Fracas [4]. Fracas

emulates CPU frequency for the same machine. As reported

in [4], accurately emulating CPU frequencies is a challenging

task, even in the same system. Instead, we take the performance

profiles as our baseline and quantify variability, irrespective of

the differences between frequencies.

Architecture-independent characterization of workloads [5]

and performance [6] has been extensively researched in the past.

In our case, working at the OS virtualization level imposes new

challenges. As we have shown, a way of overcoming these

is by using a comprehensive list of microbenchmarks that

can accurately characterize the performance of the underlying

system.

VII. CONCLUSION

Characterizing the variability between machines signifi-

cantly facilitates the interpretation of results when validating

performance reproducibility across distinct platforms. While

performance models and hardware emulation can, in principle,

accurately capture performance characteristics of hardware, it

comes at extreme cost and difficulty. In this work we have

introduced a simpler model for validating results that relies on

performance profiles and incorporates variability ranges. With

the aid of OS-level virtualization we can reduce the variability

by limiting CPU bandwidth.

Acknowledgements: Work performed under auspices of US

DOE by LLNL contract DE-AC52-07NA27344 CONF-681457

and by SNL contract DE-AC04-94AL85000 .

VIII. REFERENCES

[1] D. Beyer, S. Löwe, and P. Wendler, “Benchmarking and

Resource Measurement,” Model Checking Software, 2015.

[2] D. Merkel, “Docker: Lightweight Linux Containers for

Consistent Development and Deployment,” Linux J., vol.
2014, Mar. 2014.

[3] J.P. Ignizio, “On the Establishment of Standards for Com-

paring Algorithm Performance,” Interfaces, vol. 2, Nov.
1971.

[4] T. Buchert, L. Nussbaum, and J. Gustedt, “Accurate

Emulation of CPU Performance,” Euro-Par 2010 Parallel
Processing Workshops, 2010.

[5] K. Hoste and L. Eeckhout, “Microarchitecture-Independent

Workload Characterization,” IEEE Micro, vol. 27, May.

2007.

[6] G. Marin and J. Mellor-Crummey, “Cross-architecture

Performance Predictions for Scientific Applications Using

Parameterized Models,” Proceedings of the Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems, 2004.

10801080

