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Abstract—The DOE Extreme-Scale Technology Acceleration
Fast Forward Storage and IO Stack project is going to have
significant impact on storage systems design within and beyond
the HPC community. With phase two of the project starting, it
is an excellent opportunity to explore the complete design and
how it will address the needs of extreme scale platforms. This
paper examines each layer of the proposed stack in some detail
along with cross-cutting topics, such as transactions and metadata
management.

This paper not only provides a timely summary of important
aspects of the design specifications but also captures the under-
lying reasoning that is not available elsewhere. We encourage
the broader community to understand the design, intent, and
future directions to foster discussion guiding phase two and the
ultimate production storage stack based on this work. An initial
performance evaluation of the early prototype implementation is
also provided to validate the presented design.

I. INTRODUCTION

Current production HPC IO stack design is unlikely to
offer sufficient features and performance to adequately serve
extreme scale science platform requirements. While new hard-
ware, such as non-volatile memory will help, we still need a
new software stack to incorporate this new hardware as well as
address the extreme parallelism and performance requirements
demanded by exascale applications. Adding to the problem
complexity is the variety of Big Data problems users want to
address using these platforms. Unlike the centralized storage
arrays favored for HPC platforms, big data analytics systems
have grown up using storage distributed on all of the nodes
driving a very different software architecture. With post-
exascale platforms required to address both workloads, a new
storage stack is required.

A joint effort between the US Department of Energy’s
Office of Advanced Simulation and Computing and Advanced
Scientific Computing Research commissioned a project to
develop a design and prototype for an IO stack suitable for
the extreme scale environment. It will be referred to as the
Fast Forward Storage and IO (FFSIO) project. This is a
joint effort led by Lawrence Livermore National Laboratory,
with the DOE Data Management Nexus leads Rob Ross and
Gary Grider as coordinators and contract lead Mark Gary.
The participating labs are LLNL, SNL, LANL, ORNL, PNL,
LBNL, and ANL. Additional industrial partners contracted
include the Intel Lustre team, EMC, DDN, and the HDF
Group. This team has developed a specification set [11] for
a future IO stack to address the identified challenges. The first

phase completed in 2014 with a second phase underway. The
first phase focused primarily on basic functionality and design.
While an idealized potential system would be the perfect target
architecture, the reality of budgets has tempered many of the
decisions. For example, extensive availability of NVRAM or
SSDs on all of the compute nodes is currently not economically
feasible limiting some of the potential design choices. With this
in mind, the second phase is incorporating fault recovery and
other missing features.

The complete design seeks to offer high availability, byte-
granular, multi-version concurrency control. Multiple versions
of an object are stored efficiently by using a copy-on-write
mechanism. By assuming the client interface will be through
an IO library, a more complicated interface offering richer
functionality can be incorporated while requiring only minimal
end-user code changes. Managing most data access in a
platform-local layer rather than requiring writing to central-
ized storage will better support the performance and energy
requirements of extreme scale application compositions.

Overall, the architecture shifts from the idea of files and
directories to containers of objects. This shift avoids the
bottlenecks related to the POSIX files and directories structure
such as file creation serialization, the file count in a directory
limitation and impact, and the limited semantics of a byte
stream. Instead, the new interface focuses on high-level data
models and their properties and relationships. This concept
permeates the entire IO stack.

In addition to addressing the traditional scientific workload,
this project seeks to expand functionality to better support Big
Data type applications. The key idea is to support Arbitrary
Connected Graphs (ACGs) such as those used in Map-Reduce
systems. Key system features are introduced to efficiently
support these computing models in addition to the typically
bursty IO loads of more traditional HPC applications. These
features are not discussed for space reasons.

The IO stack layers each contribute different functionality.
The architecture (Figure 1) incorporates five layers, some of
which have potentially optional components. The top layer is
comprised of generally a high level IO library, such as the
demonstration HDF5 library [12] and a more complex API
for accessing the lower level components. This layer is in dark
blue. Becuase the system supports more complex architectures
and supports richer functionality, hiding this complexity behind
a user-friendly API is the intent. It is possible to access the
storage stack through the more complex API, but the additional
requirements beyond standard POSIX calls will prompt most

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE

585



��������
������

����������
��	�������	�

���	���
��	��	��

Application Lustre Server 
��� ���

����!�	"	������#�����
Lustre Client 

(DAOS+POSIX) 

����!�	"	�������	��	�

I/O Dispatcher 

�$%&��

��!'�
$�(�

��� ���

����)�

����!*	���
��������	�#��

�&��!*	���
�!+��

Fig. 1. Target Architecture and Component Mapping

users to use an IO library. This layer incorporates the necessary
features for ACGs from a end-user’s perspective.

Below the user API is an IO forwarding layer that redirects
IO calls from the compute nodes to the IO dispatching layer
(in black). This IO forwarding layer is analogous to the
function of the IO nodes in a BlueGene machine or the passive
data staging processes demonstrated previously [25], [2]. One
special function of note for this layer is that it is where function
shipping will be deployed. This is discussed in Section III. The
next two layers have considerable functionality.

The IO Dispatcher (IOD) serves as the primary storage
interface for the IO stack (in green) and offers features like
Burst Buffers to insulate the persistent storage array from
bursty IO workloads. Ideally, the IOD layer’s functionality can
be optional based on available hardware and compute power
provided on the IO Nodes (IONs). Transactions are handled
primarily at this layer. Much of the functionality offered at this
layer would shift either up or down the stack as discussed in
detail below.

The Distributed Application Object Storage (DAOS) layer
serves as the persistent storage interface and translation layer
between the user-visible object model and the requirements of
the underlying storage infrastructure. Transactions work a bit
differently at this layer and are called epochs to distinguish
them. DAOS is intended to be the traditional file system-
like foundation on which everything else is built with no
dependence on any technologies specified above it (in dark
pink and yellow). For example, the IOD layer with or without
burst buffers is not required for DAOS to operate properly.
Instead, the DAOS layer can handle all of the IO operations
from the user API layer, albeit with the potential performance
and usability penalty of manipulating the shared, persistent
storage array directly.

At the bottom is the Versioning Object Storage Device
(VOSD) (in purple). It serves as the interface for storing
objects of all types efficiently for each storage device in the
parallel storage array. Think of this layer as the physical disk
interface layer. In terms of Lustre, this would replace the API
on individual storage devices with an interface friendlier to the
containers of objects and transactions/epochs concepts used in
the higher layers.

This paper presents an analysis of the published design
documents along with a discussion of the design philosophy
representing the overall intent. The design philospohy conveys
information that may or may not have been written down,
but aids understanding for the total design. This information
was gathered through interviews with the core FFSIO team

members. These ideas are presented to reveal the project
future rather than dwelling on any limitations of the published
designs. This is most important to illustrate how different
concepts will work across layers since that information is
spread across multiple documents and may lack a cohesive
overall view. Previously, a poster [19] and a more detailed
evaluation of consistency and fault tolerance [18] have been
published.

With DAOS and friends being groomed as the next gener-
ation for the Lustre parallel file system, the information and
analysis presented here can help users determine how to adapt
their thinking about storage as well as hopefully influence the
second phase.

The key contributions of this paper are the syntesized archi-
tectural overview and the discussion and analysis motivating
the architectural descisions. With this information, community
members can be better informed about an important future
storage system as well as potentially influence the evolution
of the design from prototype into production system.

The rest of the paper is organized as follows. An overview
of related work is presented first in Section II. Section III
discusses the programmatic interface end users will see when
interacting with the storage array. This will be discussed in
the context of the HDF5 based example library used for the
functionality demonstration. Section IV briefly discusses the
motivation and proposal for the IO forwarding layer. Section V
describes the IO Dispatcher layer and the broad functionality
it offers. This will detail the pieces of the layer that are
potentially optional and mention the cross-cutting features
discussed in a later, cross-cutting section. Section VI discusses
how the DAOS layer functions. As with the IOD layer, the
cross-cutting features will be mentioned, but discussed more
fully in the cross-cutting section. The VOSD layer is discussed
in Section VII. In particular, the mapping between the DAOS
and VOSD layers are explored as it pertains to the physical
storage. Next is an exploration of cross-cutting features like
transactions and metadata management in Section VIII. Since
these and other features are spread across multiple layers,
it makes more sense to discuss them independently once an
understanding of the overall structure has been presented. A
demonstration of the functionality is presented in Section IX.
This shows that the prototype system based on the proposed
design can function. Section X concludes the paper with a
summary of the broad issues.

II. RELATED WORK

Many projects over the last couple of decades have sought
to address some challenging aspect of parallel file system
design. The recent rise of “Big Data” applications with dif-
ferent characteristic IO patterns have somewhat complicated
the picture. Vendors are shifting products to address the far
larger market forcing HPC systems to adapt to these different
storage approaches. Extreme scale machines will be expected
to handle both the traditional simulation-related workloads as
well as applications more squarely in the Big Data arena. This
will require some adjustments to the underlying system for
good performance for both scenarios.

The major previous work is really limited to full file
systems rather than the mountain of file system refinements
made over the years. A selection of these other file systems
and some features that make it relatively unique are described
below.
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Lustre [7] is the de facto standard on most major clusters
offering scalable performance and fine-grained end-user and
programmatic control over how data is placed in the storage
system. The broad community support has led to a solid code
base with sufficient optimizations to serve as the low-cost,
proven solution. For each installation, system-wide settings
that apply to all files on the file system are made. The end
user, should they have different needs can reconfigure these
characteristics on a file-by-file basis. This becomes an issue
because the dominant file size is tiny. In many cases, it can be
< 4 KB. To keep from slowing the overall system performance
when creating and opening these files, most systems are
configured to use a 1 MB stripe size and a stripe count of
4 meaning only 4 storage targets are used per file. This limits
the default aggregate bandwidth to the combined speed of
four storage targets. By reconfiguring on a file-by-file basis,
this default can be overcome for large, parallel files achieving
very high performance. The downside is that this setting must
be done to take advantage of the full parallel file system
performance.

Ceph [35] is a distributed object store and file system. It
offers both a POSIX and object interface including features
typically found in parallel file systems. Ceph’s unique striping
approach uses pseudo-random numbers with a known seed
eliminating the need for the metadata service to track where
each piece in a striped file is placed. Ceph’s strengths are in
providing good perforamnce and scalability with the ability
to handle failures and deploying new storage adapting the
system in a live environment. However, this failure handling
advantage was shown [34] to limit peak performance more
than other systems like Lustre. More recently, some of these
limitations have begun to be addressed by the Ceph team, but
no new evaluations have been performed to determine if these
changes close the gap sufficiently to address the extreme HPC
performance needs.

PVFS [8] was built understanding the scalibility bottle-
necks Lustre suffers. For example, Lustre requires all processes
opening a file to hit the metadata server to receive a proper
file handle. PVFS reduces this load by allowing a single
process to open a file and sharing the handle with other
processes participating in the IO operation. There are also
other optimizations that enhance file system performance. It
has been commercialized in recent years as OrangeFS.

GPFS [31] offers a highly scalable parallel file system with
robust functionality to handle both parallel storage, recovery,
and optimization. It only supports a hands-off approach for
providing good performance for scaling parallel IO tasks and
is used extensively by its owner, IBM. Unfortunately, the stripe
size is fixed introducing potentially false sharing, when two
processes indpendently write to the same stripe, but without
overlapping, causing potentially reduced performance. Beyond
these sorts of fixed parameters, a wide variety of optimizations
and features are available for additional licensing fees.

Panasas [28] uses a fundamentally different approach to
parallel file system performance. When parallel writers simul-
taneously write to a shared file, the system dynamically adapts
the number of stripes to maintain high performance. This adap-
tion is invisible to the user other than seeing that the system
maintains high performance no matter what configuration the
workload exhibits.

This project learns from all of these parallel file system
efforts and offers a scalable approach that can work well

for everything from a small cluster to the largest exascale
platforms. By understanding what works well and what the
limitations are for each of the above systems as well as
emerging hardware architectures, this project addresses the
limitations while maintaining the advantages of the above
systems.

Other file systems, like GoogleFS [13] and HDFS [32], ad-
dress distributed rather than parallel computing and cannot be
compared directly. The primary difference between distributed
and parallel file systems is the ability of the file system to
store and retrieve data simultaneously from multiple clients, in
parallel, and treat the resulting collection of pieces as a single
object. Distributed file systems rely on a single client creating
a file typically on a single storage device. For performance, the
file or object may be replicated. The other, popular distributed
file system of note is NFS [29] that has been used for
decades for enterprise file systems. NFS is known to support a
global namespace with data migrating towards users on access
and pushed towards safer storage based on local platform
characteristics. These other file systems are mainly of interest
in the context of the ACG features of FFSIO and will be
discussed more in Section VIII-D.

The main alternative from scratch design for a file system
is Sirocco [10], [9]. Rather than continuing the striped design
of existing parallel file systems, Sirocco is inspired by peer-
to-peer and object-based systems and includes features like
transactions to protect data modification process independence
when writing to avoid coordination overhead. The base as-
sumptions are that storage is pervasive and volatile. Storage
devices and locations may come and go randomly, reminiscent
of the Google or Ceph assumptions of regularly failing hard-
ware. When data is pushed into the system, initial resilience
characteristics are guaranteed prior to returning control back
to the user. Then, as system pressures dictate, data will
either replicate as demanded by use and/or migrated towards
long-term resilience requirements. Unlike the FFSIO project,
Sirocco assumes it is possible that data may be successfully
stored in the system, but it is currently inaccessible because
all copies are currently offline. There is also some potential
difficulty in finding data since it will migrate around the
system. To be fair, Sirocco intends to function as the storage
layer for a higher level file system API making many of the
awkward system features invisible to the end user. Sirocco is
in the process of being released publicly.

III. END-USER API LAYER

Since the proposal specifies a high-level IO API will be
the primary end-user interface for programmatically interacting
with the FFSIO stack, the team used the HDF5 API and
leveraged its Virtual Object Layer (VOL) for the initial design
and implementation demonstration. This also serves as a good
test determining what are strictly necessary extensions to
an existing IO API to support the new functionality. The
additional functionality, such as transactions, can be ignored
for legacy implementations, but these applications will not be
able to take advantage of the asynchronous IO support inherent
to the new API. The additions comprise (Figure 2):

1. API extensions to support new functionality provided
by the FFSIO project. This includes calls for man-
aging asynchronous request lists, performing asyn-
chronous operations, creating and managing transac-
tions, end-to-end data integrity, and data type and
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functions to support the big data oriented functional-
ity more efficiently than the current API.

2. Function shipping from Compute Nodes (CN) to IO
Nodes (ION). This provides the application developer
with the capability of sending computation down to
the IONs and get back results and perform other
operations such as indexing and data reorganization
for more efficient retrieval.

3. Analysis Shipping from compute nodes to IO Nodes
or DAOS nodes. This is similar to function shipping,
but instead of returning the result over the network,
it is stored on the nodes and pointers to the data are
returned.

Function and Analysis Shipping are part of the cross-
cutting features and are discussed in Section VIII-C.

HDF5 [12] has a versatile data model offering complex
data objects and metadata. Its information set is a collection
of datasets, groups, datatypes and metadata objects. The data
model defines mechanisms for creating associations between
various information items. The main conceptual components
for data stored in HDF5 are described below.

• File: In the HDF5 data model, the collection of data
items stored together is represented by a file. It is an
object collection that also describes the relationship
between them. Every file begins with a root group “/”
serving as the “starting-point” in the object hierarchy.

• Group: A group is an object allowing association
between HDF5 objects. It is synonymous with direc-
tories in a file system. A group could contain multiple
other groups, datasets, datatypes or attributes within it.
Groups are named and then accessed using a standard
path notation similar to Linux with a “/” separating
each group name in the hierarchy from the root to the
nested group of interest.

• Dataset: HDF5 datasets are objects representing ac-
tual data or content. Datasets are typically arrays with
potentially multiple dimensions. Other types, such as
strings and scalars, are also possible. A dataset is char-
acterized by a dataspace and a datatype. The dataspace
captures the rank (number of dimensions) and the
current and maximum extent in each dimension. The
datatype describes the type of its data elements. By
default, the entire data set is stored as a single chunk
reassembled from all processes. It is possible to use a
uniform chunking format where data is stored in fixed
sized chunks instead.

• Attribute: Attributes are used for annotating HDF5
objects. They are datasets themselves and are attached
to existing objects.

A. Virtual Object Layer
The Virtual Object Layer is an abstraction mechanism

internal to the HDF5 library [12]. As shown in Figure 2 it
is implemented just below the public API. The VOL exports
an interface that allows writing plugins for HDF5 enabling
developers to handle data in ways other than writing to storage
in an HDF5 format. Plugin writers provide an implementation
for a set of functions and are trusted to provide the proper
semantics for the new environment. For example, data staging
could be implemented in the VOL layer by replacing writing
to disk in the HDF5 format to sending data to a data staging
area using some messaging mechanism.

For this project, rather than the default writing to disk in
the HDF5 format, the VOL is used to interact with the IOD
layer and the different concepts it offers without requiring all
of the functionality be exposed to users. For example, the
containers and objects concept is mapped to the files and
datasets existing HDF5 users are familiar with. This reduces
the difficulty porting applications to the new IO stack.

Fig. 2. Architectural view of the VOL abstraction mechanism

The IOD VOL plugin serves as the bridge between HDF5
and the IOD Layer (Figure 2). The application calls the HDF5
library while running on the system’s compute nodes. Using
the VOL architecture, the IOD VOL plugin uses a function
shipper (RPC library) to forward the VOL calls to a server
component running on the IO nodes (IONs). This function
shipping is the IO Forwarding Layer discussed briefly in
Section IV. Once the calls arrive at the IO nodes, they are
translated into IO Dispatcher (IOD) API calls and executed at
the IONs.

Since the IOD layer is optional by design, a second VOL
plugin is required to access DAOS directly. This additional
complexity was deemed acceptable for the flexibility it affords.
Further, since all end user interactions are intended to be
through an IO API, having two different plugins is a small
amount of extra work to provide a single interface that would
operate on widely different scale deployments (e.g., one too
small to have the IOD layer and one at the other extreme with
a large IOD layer interfacing with a large, shared DAOS layer).

B. HDF5 to FFSIO Mapping
Since HDF5 [12] offers an interface focused on files and

the internal data types, such as datasets, these concepts must
be mapped onto the proposed FFSIO data storage concepts.
This mapping is shown in Table I

TABLE I. HDF5 DATA MODEL TO FFSIO DATA MODEL MAPPING

HDF5 FFSIO

file container
dataset array
group key-value store

attribute(s) key-value store

In Section V, the FFSIO types are described in more detail.
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IV. IO FORWARDING LAYER

The IO Forwarding layer offers a mechanism to reduce
the concurrency impact of the massive process count fan in
onto the storage stack. The current trend of using both MPI
and a node-level threading library like OpenMP, CUDA, or
OpenACC is addressing the same issue, but limited to handling
the parallelism on a single node rather than multiple nodes.
Projected extreme scale platforms will have far fewer storage
stack end-points per compute process or even compute node in
which to receive requests and data. By reducing the number of
simultaneous requests, delays can be reduced. This has been
demonstrated for the file open operation with Lustre [21] and to
some degree for accessing the storage devices themselves [22].
The BlueGene platform incorporated dedicated hardware to
perform this role. The proposed functionality for this layer,
beyond managing the number of connections to the IOD layer,
is to implement function shipping from the compute nodes to
the IO nodes.

For the basic HDF5 calls, this will work the same as
how the Nessie staging [20] shifted the collective IO data
rearrangement calls to a reduced number of processes. The
prototype implementation will only support accessing func-
tionality already deployed to the IO nodes through an RPC
mechanism. This initial implementation will use Mercury [33]
to access the remote functionality. For dynamically defined
functions, a different system will be required leveraging some-
thing like C-on-demand [1] or some other dynamic deployment
and compilation or an interpreter system.

V. IO DISPATCHER LAYER

Strictly speaking, the IO Dispatcher layer and included
functionality, such as burst buffers, is optional. All of the func-
tionality, such as function and analysis shipping, transaction
management, and managing asynchronous data movement can
be handled by other portions of the stack. For an extreme scale
platform, the IOD layer will be an essential pressure relief
valve for the underlying persistent storage layer. By making it
optional, the proposed stack can be deployed more easily on
smaller clusters or for those with more constrained budgets.
For simplicity, the rest of this section will describe a full stack
including all of the proposed IOD components.

The core idea for IOD is to provide a way to manage
IO load that is separate from the compute nodes and the
storage array. Communication intensive activities, such as data
rearrangement, can be moved to the IOD layer reducing the
number of participants and message count. The IOD has three
main purposes. First, the burst buffers work as a fast cache
absorbing write operations that then trickles out to the central
storage array or pre-staging read operations. It can also be
used to retrieve objects from the central storage array for more
efficient read operations and offers data filtering to make client
reads more efficient. Second, it offers the transaction mecha-
nism for controlling data set visibility and to manage faults that
could expose an incomplete or corrupt data set to users. These
transactions are local to the IOD layer until persisted to the
DAOS layer eliminating the need for burdening the persistent
storage with transient data. Third, data processing operations
can be placed in the IOD. These operations are intended to
offer functionality like data rearrangement and filtering prior
to data reaching the central storage array.

While these ideas are not necessarily new, they are new
twists on best of class efforts for these technologies. For

example, offloading the collective two-phase data sieving from
the compute nodes to reorganize data has proven effective at
reducing the total time for writing data due to fewer partic-
ipants involved in the communication patterns [20]. Beyond
these broad items, there are many important details some of
which are examined in more detail below.

A. FFSIO Data Model Types
With the shift from a directories and stream-of-bytes files

model to the container and object model, some description is
required to better understand how these concepts are being
used as well as the raw benefits.

Container As mentioned above, the concept of a container
is similar to that of a file in a traditional file system. However,
rather than being in a directory structure, each container
essentially is stored in a hash-space allowing direct access
to any container without regard to the current organizational
context of the file system. For example, there is no need to
navigate a directory hierarchy to name a particular container.

Functionally, a container plays the same role as a file in that
it holds a collection of presumably related data intended to be
accessed and manipulated as a unit. Since this is extended from
HDF5 files, the container could also be viewed as a directory
tree of objects where each directory entry specifies either a
sub-directory (group) or some data or attribute. For the IOD
layer, it is a collection of objects. For HDF5, interpreting the
objects builds the structure.

Key-Value Store This is the base type for the container.
Since the container represents something akin to HDF5 files,
everything is stored within a hierarchical namespace. The root
namespace is represented by the base key-value store and
contains a list of all of the objects for this portion of the
namespace as well as additional key-value objects representing
sub-groups for the hierarchy. Each of those key-value store
objects works identically. Attributes are stored in a key-value
store object, but use the multi-dimensional array and blob
objects to store the values for the attributes.

Multi-Dimensional Array By treating arrays as a special
case separate from blobs, additional opportunities are enabled.
For example, by knowing that an object is an array, proper
slicing of that array onto IO nodes can be done without
involving higher levels of the IO stack.

Blob All other data is stored as a stream-of-bytes without
regard to the actual data type.

B. Multi-Dimensional Arrays
For both IO performance and to aid in analysis and other

data processing, the multi-dimensional array object can be
split across multiple IO nodes. Each piece of this array is
called a shard. The idea of sharding is to store a logically
complete portion of a data set on a single storage target.
This is similar in concept to the HDF5 hyperslab. The FFSIO
stack supports sharding the data in the default or some other
structured way as well as “re-sharding” based on application
needs. For example, reordering the data so that a different
dimension is the “fast” dimension may greatly improve the
performance of a subsequent data analytics task. A common
scenario where this is useful is a Fortran code (column-major)
writes data for a C code (row-major) to analyze. The IOD API
supports the following sharding strategies:

• contiguous. Fixed chunking, distributed in a round-
robin fashion across the IO nodes.
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• chunked. Same as above but with irregular (sparse)
chunking.

• user-defined. Either contiguous or chunked, but user
specifies where to place each individual shard.

It is possible to request the transformation of an object’s
physical layout to other formats resulting in multiple copies
of the same objects in multiple formats. Also, the user can
pre-fetch objects from the storage cluster into the IO nodes or
read them directly from the storage cluster. At the semantic
level (HDF5), indices can be created for datasets resulting in
being able to read through an index instead of directly from
the base array.

All of these distinct alternatives result in having many
different ways for executing the same analysis task. In the
subsequent discussions, we consider only data-movement op-
timization, i.e., sending the analysis code as close as possible
to the data. In practice, this means we focus on identifying
sharding of datasets and execute code accordingly over the
appropriate shards.

C. IO Nodes
IOD processes are hosted on the IO nodes that interface

a general compute area with the storage array. The IO nodes
handle requests forwarded by the scientific applications, poten-
tially integrate a tier of solid-state devices to absorb the burst
of random or high volume operations, and organize/re-format
the data so that transfers to/from the staging area from/to the
traditional parallel file system can be done more efficiently.
It also has the capacity to execute analysis on data recently
generated by simulation applications running at the compute
nodes, but not persisted to the storage array. As the data arrives,
re-organization and data preparation can be applied in order to
anticipate the execution of analytical tasks.

Fig. 3. Extreme Scale Architecture

A common configuration for this type of deployment is
shown in Figure 3. The designated IO nodes (IONs) are con-
nected to the compute nodes (CNs) through the same fast fabric
(e.g., InfiniBand) while the connection to the external storage
cluster is through a secondary, slower channel (e.g., 10Gb
Ethernet). By providing additional storage on the IO nodes,
such as SSDs, these nodes are capable of better regulating
the IO pressure on the underlying storage array better than
simple forwarding gateways. For this project, using something
like SSDs on the IO nodes is termed a Burst Buffer and is
discussed below.

D. Burst Buffers
The idea of burst buffers were initially explored in the

context of data staging [3], [2], [25], [38]. These initial designs
all use extra compute nodes to represent the data storage buffer
given the lack of any dedicated hardware support for this

functionality. The desired outcome of these initial studies is
to motivate how such functionality might be incorporated and
the potential benefits. Later, these concepts were proposed to
be incorporated into the existing IO stack architecture [26],
[5], [4].

In the case of the written IOD design, it describes a fixed-
sized staging area that is partitioned on a per-application basis.
As part of an application being deployed into the platform,
each application will be allocated a fixed number of IO nodes
for exclusive use during the application run. This provides
guarantees about how much burst buffer space and processing
capability will be available for the applications.

Future work will generalize this model to potentially sup-
port dynamic IO node allocation and examine the possibility of
oversubscription. It will be strictly necessary to consider shared
IO nodes for cases where the number of deployed applications
exceeds the number of IO nodes. This first phase focuses on
extreme scale application runs that use the vast majority of
a platform rather than a capacity cluster where end-to-end
performance is a lesser concern.

E. Data Versioning
Since space is limited in expensive, in compute area storage

resources, a copy-on-write approach is used for new versions
of the same data. For example, for a checkpoint/restart file,
multiple versions will be written. The only parts of this
container that must be replicated are those that have changed
since the last write. With potentially many transactions written
to the IOD layer because it is fast, this approach will enable
additional output to be stored while reducing the space over-
head. The inherent dependencies this introduces into the data
are a lesser issue for the generally transient data in the IOD
layer. For data intended for persistence in the DAOS layer, it
may expose all versions of the data to corruption unnecessarily.
This is explored in more detail in the Section VI.

F. Design Philosophy
The burst buffers design, as presented in the IOD doc-

uments, limits the placement of the function operators and
SSD buffers to the IO nodes. The limitations of this design
are acknowledged and the intent is to ultimately spread the
IOD layer from the IO nodes into the compute area as well.
This is intended to help address the limitations of the IO
bandwidth and compute capability of these few nodes for data
processing and also to take advantage of new layers in the
storage hierarchy. By incorporating NVRAM into compute
nodes, new options for buffering data prior to being moved to
centralized storage become available and addresses potential
concerns about SSD performance. For example, including a
small amount of Phase Change memory into many or most
compute nodes offers a way to move data outside of both the
compute and IO path for data and communication intensive
operations. Other projects [38] have shown this will have value,
but the cost will have to be considered as part of the overall
platform budget. This lessens the impact of some operators
while offering additional options for places to store data.

Burst buffers being optional is a high level goal, but not
considered in detail within the phase one design. If there is
no burst buffer, all of the advanced functionality proposed
for the IOD layer would have to work against the DAOS
layer instead. For example, function shipping assumes it will
operate on fast, local data within the IOD layer rather than
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against the globally shared DAOS layer that will likely still be
disk for at least a couple more generations of platforms. With
the additional desire to support using compute node resources
for these operations, serious work will be required to make
a fully functional end-to-end IOD layer implementation for a
production system.

VI. DAOS LAYER

The Distributed Application Object Storage (DAOS) layer
serves as the traditional parallel file system interface layer for
the storage devices. This is the consistent, global view of the
underlying devices represented in this stack by the VOSD
layer. This is the layer where the container/object model is
translated into the physical storage requirements dictated by
the physical storage underneath (the VOSD layer). The two
key design elements of this layer are the handling of epochs
and the mapping of containers and objects to the underlying
storage.

There is a bit of a terminology shift between the IOD layer
and the DAOS layer. For the IOD layer, a shard represents a
portion of an object that is spread across potentially multiple
IO nodes. For the DAOS layer, a shard represents the portion of
a container that is spread across potentially multiple physical
storage devices. The physical storage devices are represented
by the VOSD layer described in Section VII.

While transactions at the HDF5 and IOD layer use the
same term, at the DAOS layer the terminology shifts. Instead
of transactions, the term epochs is used instead. Rather than
attempting to introduce confusion, this is intended to help
clarify how these concepts are used at different layers of the
FFSIO stack. In the HDF5 and IOD layer, every operation has
a transaction that may or may not ultimately be persisted to
the DAOS layer. When a transaction is persisted to DAOS, it
is termed an epoch to reflect that this is a persistent version
of the container. For simplicity the epoch ID is the same as
the transaction ID that was persisted. Unlike transaction IDs,
epoch IDs generally are not consecutive reflecting that not all
transactions will be persisted to DAOS.

To deal with the potentially missing data versions between
epochs because not all transactions are persisted, a special
procedure must be followed. The “flattening” process com-
bines multiple copy-on-write versions of a transaction into a
single epoch. Since this stack uses a copy-on-write approach
to reduce the space requirement for new versions of existing
files all of the changes between the last epoch and the current
epoch must be combined into a single entry. While not a
cost free operation, it is generally considered inexpensive
since a backwards combining of transaction blocks can be
made ignoring any block that is already part of the combined
changes.

The current implementation has the DAOS layer map the
container/object data model onto a directory/file data model
used for most existing file systems. Should a fully object-based
file system be deployed at the VOSD layer, this mapping would
be unnecessary. The current projections suggest that a standard
POSIX-like file system will likely be used at the lowest level
on each storage device requiring the mapping at some level.
To perform this mapping, DAOS considers the following.

Each container is represented by a directory on some
storage device containing symbolic links to all of the shards
it contains and maintains the epoch ID. In particular the
Highest Committed Epoch is an important concept for quickly

identifying which version of a shard to retrieve and to block
writes to older epochs since those have been committed.

Overall, the DAOS layer serves as the shared persistent
storage interface for the IO stack. In the case of a data center-
wide storage array, the DAOS layer would be shared across
all of the platforms with the upper layers being local to each
individual platform.

To address consistency issues between platforms, con-
tainers at the DAOS layer must know of every transaction.
To address this, a container is updated every time a new
transaction is created for it and closed or aborted. This ensures
that if multiple platforms are writing to the same container
sequentially that they will not have conflicts in the highest
transaction number. The FFSIO stack does not support multiple
applications from the same or different platforms using a
shared DAOS layer to write to the same container at the same
time. This functionality is not supported by popular existing
paralell file systems either.

A. Design Philosophy
The DAOS layer is the key storage management layer

for this system. By handling the translation between user-
level concepts and the underlying hardware, performance and
functionality are both important. The choice of an object
interface is influenced by the performance gains achieved by
the data analytics community for non-shared data access. With
the system design favoring requiring this operation mode,
using an object interface fits naturally. With the broad array of
object-based storage devices hitting the market, this layer may
thin outsourcing much of the object creation and management
to these speciailzed devices.

Since this is the layer at which a storage system will be
shared by multiple platforms, consistency is also a concern. By
shifting to an object model and moving away from a POSIX-
style directory tree, maintaining consistency will be easier. No
longer will a consistent view of a particular set of files (con-
tainers) be required. Instead, only a single container need be
consistent. With container sharing between platforms generally
being limited to downstream analysis routines, waiting for a
new epoch to be persisted can serve as an analysis trigger.

Issues related to the handling of transactions and epochs
are discussed in Section VIII-A. Maintaining storage system
scalability with this functionality will be challenging.

VII. VOSD LAYER

The Versioning Object Storage Device (OSD) layer oper-
ates as the interface for each persistent storage device used to
support the parallel storage array. In the purest form, it uses
a local file system to arrange storage of objects that represent
parts of the higher level objects in containers.

The base level implementation continues the space opti-
mization of only storing changes for new versions by using
a copy-on-write file system. The prototype uses ZFS [37] for
the known stability and integration with Lustre. In a production
version of the FFSIO stack, btrfs [30], The Linux B-Tree File
System, given its open-source backing and GPL licensing, is
a likely long-term choice.

At a more detailed level, the design for VOSD is an
increment beyond the current Lustre Object Storage Device
design to incorporate the idea of shards and the versioning
aspects of transactions/epochs. For every DAOS shard, the
VOSD has information for storing and accessing the currently
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committed version, the Highest Committed Epoch, as well as
a staging dataset representing the next version of the object
being stored. Both of these are combined in a shard root.

For data integrity, an intent log is maintained as part of the
underlying file system enabling fault recovery.

Beyond the functionality to incorporate and expose the
copy-on-write nature of the underlying file system and the se-
mantics for storing and processing shards and their associated
epochs, this is largely an evolution of the existing Lustre OSD
layer.

VIII. BROADER DESIGN

Several concepts crosscut many of these layers and are best
described in a single location. For example, transactions and
epochs are visible from the user API level down into the VOSD
layer. While each layer affects the concept, it is best to look
at each concept across all of the layers.

In the subsections that follow, we examine transactions
and epochs, metadata management, and function and analysis
shipping.

A. Transactions and Epochs
In our previous work [18], we focused strongly on not just

exploring, but also critiquing using transactions, as proposed,
for consistency control. This section recaps some of that
information to give a more self-contained presentation.

As mentioned above, the transaction mechanism manifests
in two forms. From the user level down through the IOD layer,
they are called transactions and are used to judge whether or
not a set of distributed, asynchronous modifications across a set
of related objects (i.e., within a container) is complete or not.
It is also used to control access by treating the transaction ID
of committed transaction as a version identifier. At the DAOS
layer and below, they are called epochs and represent persisted
(durable) transactions from the IOD layer. Each of these offers
different functionality, but are connected as is explained below.

1) Transactions: To understand how transactions are used
in the IOD layer, some terminology and concepts must be
explained first. At the coarsest grain level is a container. Each
container provides the single access context through which to
access a collection of objects. Transactions are the way that
a series of modifications to the objects within a container are
treated atomically. Conceptually, containers correspond to a
something akin to an HDF5 file in a traditional file system.
The objects in each container represent different data within
a file. The three initially defined object types are key-value
stores, multi-dimensional arrays, and blobs. The easiest way to
understand these types is to evaluate these from the perspective
of an HDF5 file, the initial user interface layer. The key-
value store represents a collection of attributes or groups.
The array represents a potentially multi-dimensional array.
The blob represents a byte stream of arbitrary contents. The
fundamental difference between an array and a blob is that the
array has metadata specifying the dimension(s). At the physical
layer within the IO nodes, all of these objects may be striped
across multiple IO nodes. Given this context, the transactions
come in two forms.

First is a single leader transaction where the IOD manages
based on calls from a single client. The underlying assumption
is that the client side will manage the transactional operations
itself and the single client is capable of and responsible for
reporting to the IOD how to evolve the transaction state.

The second form is called multi-leader and has the IOD
layer manage the transactions. In this case, when the transac-
tion is created, a count of clients is provided to the IOD layer.
As clients commit their changes to the container, the reference
count is reduced. Once the count reaches 0, the transaction is
automatically committed. Aggregation into a smaller set of
leaders is also possible.

2) Epochs: The Epoch mechanism differs from transac-
tions. Instead of focusing on when a particular output is
complete, an epoch represents incremental persisted container
copies. To simplify the mapping between an IOD transaction
and the DAOS epochs, when an IOD transaction is persisted
to DAOS, the IOD transaction ID is the used as the epoch ID.
The key difference is that at the DAOS layer, some transaction
(epoch) IDs will not be represented with data since not all
IOD transactions are necessarily persisted. Maintaining this
ID continuity is critical for multiplatform use. Since the shared
point is the DAOS layer, any user adding a new version to a
file must be able to determine the most recent transaction ID
no matter from where the container was updated last.

3) Design Philosophy: Undocumented, but inherent in the
design of these transactions is how faults are detected. The
initial design assumes the current Lustre fault detection mech-
anism that can determine if a process or node is no longer
reachable. This detection happens at the DAOS layer and when
a fault is detected, the rollback process is pushed up to the IOD
layer for all non-persisted or non-committed transactions. This
defines how a fault will be detected and what will trigger a
passive fault recovery (i.e., transaction abort). The challenge
with this approach will be scalability. Existing Lustre systems
can use the IO node status as a proxy for compute area
status. Since the DAOS layer must now know the state of
every node, if not every process on every node, to properly
handle transactions, some scalable status tracking mechanism
is required.

There are two steps for beginning a transaction on a
container. The first step is for one or more process to open
the container. This handle can be shared eliminating the need
for every participating process to hit the IOD layer to open
the file. The second step is a call to determine how many
leaders will participate in the transaction. In the single leader
case, there is no IOD-side aggregation of success/fail statuses
to determine the final transaction state. Instead, it is assumed
that the client will fully manage the transaction. In the multi-
leader model, some subset from 2 to n where n is the count
of all processes, declare themselves a leader for this container
operation to the IOD layer. Any number of processes can
participate in modifying container without regard to whether
or not they are a leader. Once each leader has finished, with
the assumption that any clients a leader may be responsible for
are finished as well, the IOD layer aggregates those responses
to either commit or abort the transaction. For scalability and
performance, phase two is favoring single leader transactions.
With libraries like D2T [17], [15], [16] to ease implementing
client-side transactions, this burden is lessened.

Ultimately, with the passive detection of faults for transac-
tion leaders, the transaction mechanism can work very well.
A mostly unstated restriction that is being relaxed for phase
two is that every sequential transaction on a container is
considered dependent on the earlier transaction. Should one
output be delayed and the subsequent five succeed, when the
delayed process finally fails, all six transactions are rolled
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(a) Write Hosts (b) Read Hosts

Fig. 4. Functionality Demonstration Validation for Number of Hosts

(a) Write Size (b) Read Size

Fig. 5. Functionality Demonstration Validation for Data Sizes

back. The thought of using this mechanism to store subsequent
checkpoint outputs in the same container to both save space,
but not care if one fails, cannot work in the current form.
This has been acknowledged and is being relaxed requiring
a new parameter to the creation of a transaction determining
if it will be dependent or not. The downside to supporting
this functionality is the reduced ability to use copy-on-write
to reduce space pressures. If a transaction is allowed to fail
and not affect subsequent transactions, the beginning state for
subsequent transactions must the committed version prior to
the current transaction. For example, if transaction ID 5 is
marked as independent and 4 was previously committed, then
transaction ID 6 will have to use version 4 as the base for copy-
on-write. A more in depth discussion of how transactions and
checkpoint restart work is presented in BAD Check [6].

B. Metadata Management
Metadata management has been a perennial challenge for

parallel storage systems. Eliminating metadata management as
a special case and instead treating it just as data is a central
design goal of the Fast Forward project. FFSIO uses a hybrid
approach to metadata management that is halfway between
providing no inherent metadata support and having a fully
integrated, but separate metadata management system.

Eliminating metadata as a core component of a file system
is not new. It has been explored as part of the Light Weight
File Systems project [27]. In LWFS, the metadata service is
explicitly limited to a user task with the storage layer limited
to data storage/retrieval, authorization, and authentication. This
approach proved workable. Using this hybrid approach is less
common [36] and introduces other issues.

IOD and DAOS both share a philosophy that they will
have to maintain the metadata about how the physical pieces
of the logical objects are striped and where they are placed.

The primary metadata management is done at the DAOS
layer with the IOD layer relying on the DAOS layer for all
authoritative information about containers and objects. The
only place where the IOD layer manages metadata for itself is
to manage how the different objects are striped across the IO
nodes.

1) Design Philosophy: While the metadata design is not
fully defined, there are a few things that are intended. For
example, there will be a standard, well-known container that
is the system metadata. This includes the list of all other
containers. This container is treated like any other data in
the system and striped as appropriate. Unfortunately, this still
couples the metadata to a single object that must serialize ac-
cess. If the metadata, including information about striping and
other data layout operations were separated completely from
the data path, more scalable throughput could be achieved.
The real challenge of this is introduced by the IOD, DAOS,
and VOSD layers collectively. Each of these requires some
different metadata storage and the migration is invisible to the
user. Supporting fully independent metadata with this model is
difficult. Serious thought on how to do this effectively outside
the data path will be considered for phase two.

C. Function and Analysis Shipping
A client/server architecture is implemented for the Com-

pute Node-IO Node communication model. Every ION runs
an IOFSL (IO Function Shipping Layer) server. The IOFSL
client is integrated into the HDF5 library running on each CN.
A client can forward requests to any number of IONs. Every
IO operation issued by HDF5 is asynchronously shipped to the
IOFSL server and asynchronously executed. As it is currently
implemented, the only functionality that can be “shipped”
already exists on the IONs and is activated using RPC calls.
This will be re-evaluated for phase two to provide more
dynamic functionality.
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1) Design Philosophy: The advantages of in transit and in
situ processing is well documented. For example, PreDatA [38]
evaluates different operator placement decisions and when
each is advantageous. Inherent in this approach is the need
to ship arbitrary code to run in various locations. Security
considerations aside, something like C-on-demand [1] or some
other dynamic code generation and execution system will be
required. Lightweight containers [24] could also be used, but
with potentially higher management overheads.

Fig. 6. GraphLab and GraphBuilder stacks

D. Arbitrarily Connected Graphs
What people popularly consider Big Data applications fall

into two broad categories. First, data processing tasks that
can fit into the MapReduce model where data is tagged and
sorted to discover relationships. These sorts of applications
only require scale out rather than scale up. Scaling out requires
replicas to process data simultaneously, but do not need to
coordinate for that data processing. Scaling up, what scien-
tific simulations do, requires sometimes serious coordination
between the processes for any of them to succeed. In the
middle are graph applications that, with some replicated data,
can be made to fit reasonably well into the MapReduce
model. The challenge is having access to the edge and vertex
lists effectively to build partitions for independent process-
ing. GraphBuilder [14] is a tool to generate effective graph
partitions reducing the load for using MapReduce to process
graph data sets. GraphLab [23] offers a way to process these
graphs efficiently for parallel platforms using a minimum of
communication. Using these tools as motivators, changes to
the HDF5 interface and the underlying storage infrastructure
is proposed. The following illustrates the architecture of both
frameworks:

In order to make both of these tools work on top of the
extreme scale stack, they both have to be modified. After
these modifications are implemented, GraphBuilder will be
able to write the partitioned graph in the newly proposed HDF5
files which will thus be stored in the IOD nodes (or IONs)
in a parallel-optimized way. On the GraphLab side, HDF5-
awareness will allow the library to perform at high speeds by
benefiting from the new features, such as the function shipping.
In general both frameworks will be modified so that calls
to HDFS-based formats are replaced by the proposed HDF5
equivalents. This is referred to as the HDF Adaptation Layer
or HAL and will provide, from the GraphBuilder/GraphLab
point of view:

• capability for storing the newly proposed HDF5 for-
mat

• association of network information to vertices/edges
• shipping computation to the IONs
• asynchronous vertex updates
• efficient data sharing among CNs
• computation over versioned datasets

The initial phase of this project has determined the nec-
essary changes in the HDF5 format to support these features.
These identified features will be proven during phase two with
a demonstration of GraphBuilder and GraphLab.

IX. DEMONSTRATION

This stack has an early prototype implementation intended
to test concepts rather than performance and scalability. It has
focused on examining the interaction of the different APIs for
each layer to flesh out any detailed requirements or concerns
that may have been missed in the conceptualization of this IO
stack. To demonstrate the viability of the IO stack described
in this paper, we show some very early performance results
from the untuned prototype.

All of the tests are performed on the Buffy Cray XC30-
AC at LANL. It consists of 64 compute nodes each with dual,
8 core Intel Xeon ES-2670 CPUs at 2.6 GHz and 64 GB
RAM. The interconnect is Cray Aries. There are 14 IO nodes
consisting of single socket, 8 core Intel Xeon ES-2670 CPUs
at 2.6 GHz with 32 GB of RAM. There are also a metadata,
login, and 2 boot nodes. The storage array has disk and SSD
partitions. One is a DDN Lustre system with 192 TB disk
usable with a minimum of 5 GB/sec performance. The rest
are SSDs consisting of an EMC flash array connected via FDR
InfiniBand with 22 TB and 48 GB/sec write performance.

We run two different sets of tests. The first set in Fig-
ure 4 show the reading and writing performance for different
numbers of hosts. Each read or write is 4 GB against the
x-axis number of hosts. The second set in Figure 5 show
the performance of reading and writing different sizes for 56
clients, the smallest client count when performance stabilizes
in the number of hosts tests. The performance of both of these
tests are reported to give a very rough idea of the overhead that
might be involved. Rather than a true overhead, this should be
considered the maximum overhead that should be expected
once an optimized, fully functional IO stack is deployed
without relying on translating to an underlying parallel file
system.

X. CONCLUSIONS

The Fast Forward Storage and IO Stack project has de-
signed a good first pass at addressing the requirements for
an extreme scale data storage mechanism. By preferring a
high level user API like HDF5 rather than using the POSIX
interface, more advanced functionality can be incorporated
with less end-user impact. The introduction of the IOD layer
with buffering will absorb the difference between the compute
node IO demands and the available bandwidth in the storage
array. With DAOS supporting translating the container and ob-
ject model to the underlying storage options, different storage
technologies can be deployed over time.

With the overall stack design a prototype implementation
complete, refinements, such as fault detection and recovery,
can be designed and tested. These and other activities for
phase two will ultimately generate what is likely to be the
next generation storage stack for extreme scale platforms.
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