
Managing I/O Interference in a Shared Burst Buffer
System

Sagar Thapaliya and Purushotham Bangalore
University of Alabama at Birmingham

Birmingham, AL, USA
Email: {sagar, puri}@uab.edu

Jay Lofstead
Sandia National Laboratories

Albuquerque, NM, USA
Email: gflofst@sandia.gov

Kathryn Mohror and Adam Moody
Lawrence Livermore National Laboratory

Livermore, CA, USA
Email: {kathryn, moody20}@llnl.gov

Abstract—In this work, we investigate the problem of inter-
application interference in a shared Burst Buffer (BB) system.
A BB is a new storage technology for HPC architectures that
acts as an intermediate layer between performance-hungry HPC
applications and the slow parallel file system. While the BB is
meant to alleviate the problem of slow I/O in HPC systems, it is
itself prone to performance degradation under interference. We
observe that the magnitude of interference effects can reach a level
that matters to the HPC system and the jobs that run on it. We
investigate I/O scheduling techniques as a mechanism to mitigate
BB I/O interference. With our results, we show that scheduling
techniques tuned to BBs can control interference and significant
performance benefits can be achieved.

Keywords-Burst Buffer, Parallel I/O, Data Storage, Non Volatile
Memory, Resource Management, Scheduling, I/O Interference

I. INTRODUCTION

Today, high performance computing (HPC) I/O systems
face many challenges. As applications scale, they demand
specialized hardware and software to meet the performance
needs of their increasingly intensive and concurrent I/O requests.
Currently, the parallel file system (PFS) and I/O middleware
provide such support [1], [2], but the PFS struggles to meet
the performance demand. First, it is costly to scale up a PFS
because the bandwidth to cost ratio is relatively low in disk-
based storage systems. Second, the PFS can suffer from inter-
application interference as HPC clusters are normally shared
across multiple jobs that can access the PFS concurrently. The
concurrent accesses can interfere with each other resulting in
I/O performance degradation due to contention [3], [4].

To reduce contention, a new storage technology called a burst
buffer (BB) has been introduced [5]. A BB is a layer of fast
storage devices, such as non-volatile memory (NVM), between
HPC applications and a relatively slow PFS. Vendors provide
APIs for using BBs as a fast write or read staging area for
the PFS. Recent research has shown that a BB can act as a
cost effective solution to achieving a cost/performance balance
[5]. In an HPC system, the BB will provide high performance,
but is expected to be installed with a limited capacity, e.g., the
Trinity system at Los Alamos National Laboratory (LANL) has
a usable BB capacity of 1.75× system memory [6]. The PFS
is still used for capacity and data is asynchronously moved
between the PFS and intermediate BBs reducing the effective
I/O overhead of applications [5], [7].

HPC systems equipped with BBs will be available in the
near future, e.g., Trinity at LANL [6] and Cori at the National
Energy Research Scientific Computing Center (NERSC) [8].
Vendors are creating software products to support and manage
BB systems. For example, Cray provides DataWarp software

�
���

����
����
����
����
����
����

��	
��

���	����
��������
		 ��
������������� �
�
��
�

�
�������

��
��

����
��

��
�

�
 !

�
"

���
		�!�

����

���� � ���	
��
����� ����� ����
����
�� ��� ����
�� 	��� ��
�	 	��� ��

Fig. 1: Simulation of 3 concurrent jobs writing to a pool of 100
BB nodes on Trinity, under different BB allocation policies.

[7] and the SLURM scheduler supports BBs [9]. BBs are
expected to strongly impact machines from the current new
generation through exascale systems. As machines are deployed
with BBs, uses beyond checkpoint/restart, such as in-transit data
processing and data staging between workflow components
[10] are expected to develop. We expect BBs to support
these workloads alleviating the I/O problem that HPC systems
currently face.

Today, little attention is paid to managing a BB system as a
shared resource across multiple applications. Most of the work
on BBs has explored its potential usefulness [5], [11] and the
design of software systems to enable access from individual
user applications [11], [12]. There is some work for managing it
in a multi-application environment. For example, BB allocation
policies based on limited write lifetimes of SSDs [13] and
allocation policies based on capacity [7], [9]. Wang et al. [14]
address part of the contention problem in the PFS when draining
data from a BB. However, there are more sources of contention
in the BB itself that need to be addressed, such as performance
variability in SSDs during simultaneous access from multiple
applications [15].

As motivation, in Figure 1, we show results for a simulation
experiment to explore BB allocation policies based on bandwidth
maximization and interference reduction using policies similar
to those in DataWarp [7] and assuming the BB architecture of
Trinity. These two allocation policies resulted in increases in
total aggregated write time for three concurrently running jobs by
up to 6.3× and 2.6× respectively compared to the baseline case.
The impact for individual jobs is significant too. For example, in
this experiment, the 800-compute node job (J1) suffered write
time increases as much as 33× and 7× under these policies.
In this simulation, we only capture a slowdown resulting from
sharing BB nodes’ I/O bandwidth across concurrent applications.
These are significant performance penalties. The penalties can
go even higher in real systems if additional contention occurs
on shared resources such as SSDs and network.

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.54

416

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.54

416

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.54

416

There are also potential issues with an alternative BB
architecture [8] where BB storage is placed local to compute
nodes. For this architecture, jobs may have the advantage of
reduced interference if they access the local BB. However,
sharing may still be required, e.g., to access shared data
between workflow components or to access more BB space
than what is available locally. During such sharing of BB
resources on compute nodes, interference can even extend to
other resources and operations such as memory access and
network communications [16], [17].

Thus, issues remain with shared BB systems for which
existing solutions may not provide effective support. Specifically,
inter-application I/O interference is a dynamic issue occurring
at runtime with the arrival of concurrent I/O requests from
different jobs. We need a more robust mechanism to manage
interference in a shared BB system. In this paper, we focus on
using scheduling as a robust technique for managing interference
in a shared BB system. We argue that scheduling I/O requests at
runtime can be beneficial for controlling interference in a shared
BB system and thus should be made an important component of
BB management software. Such scheduling can be very effective
at a system-wide access level where all BB access requests or
I/O traffic goes into a global I/O queue and scheduling is applied
to this queue. We believe scheduler specialization to fit the BB
system and its workload may be more effective than a simple
adaptation of scheduling.

A. Contribution

This paper demonstrates that interference effects will still
be a problem for BBs and that BB scheduling is an effective
management approach to address that I/O interference. We
further show the importance of adapting the scheduler to the
BB usage model and workloads.

To validate these points, we first quantify the impact of BB
interference on HPC jobs. We then demonstrate the impact of
different I/O scheduling techniques. These include (1) adoption
of scheduling techniques from PFS I/O traffic, which controls
high level I/O traffic with coarse grained access control (serial-
ization) and (2) specialization of this technique to adapt to the
BB system by adaptive sharing aware serialization. We evaluate
these techniques though simulation and empirical experiments.
For the evaluation, we use micro-benchmarks and realistic
HPC I/O workloads generated by using I/O characteristics of
supercomputer jobs from published papers.

We find that these scheduling techniques can effectively
manage interference in a shared BB system. The coarse grained
serialization can be effective when all the jobs are allocated
BB resources across all the BB nodes in the system, e.g., 62%
reduction in total I/O time for a workload. Similarly, sharing
aware serialization can be effective when individual jobs are
allocated BB resources across subsets of the BB nodes, e.g.,
36% reduction in total I/O time for another workload.

II. BACKGROUND

This section provides background on different implementa-
tions of BB systems, I/O workloads we expect to benefit from
BBs, and sources of contention when using SSDs. We also
motivate the need for explicit scheduling of BB resources.

A. BB System

��������������	
���
�

�������������������

		��			

��
������������

�����	�������������

��������

		���

Fig. 2: BB architecture considered in this study.

In this work, we consider a shared BB system architecture
where BBs are located in dedicated BB nodes and are shared
by compute nodes (Figure 2). The BB uses an NVM-based
storage system, such as flash based SSDs, to provide higher
I/O bandwidth than disk. The BB resources are on separate nodes
located within the same network space as the compute nodes.
This allows compute nodes to operate without the performance
degradation of external processes reducing network performance
by accessing the local SSD. Instead, BB accesses are largely
isolated by the network switches.

Under this model, application processes can access the BB
system using dedicated software libraries directly accessing the
BB or hidden underneath existing I/O middleware. Early work
in this direction are presented by Sato et al. [11], Wang et al.
[12], and Lofstead et al. [18]. Recently, DataWarp from Cray
[7] and BB support from SLURM [9] were introduced.

There are alternative models for BB architecture such as
spreading it across all of the compute nodes as a storage device
or even on the memory bus on each compute node. In this paper,
we focus on BB as dedicated secondary storage.

B. I/O Workloads for BB

The BB can act as a fast storage system to support various
use cases for HPC applications including checkpoint/restart
(C/R), pre-staging of input data, and for staging data between
workflow components. C/R is a fault tolerance technique [19]
where applications periodically dump state into storage system.
In case of failure, the application will read the saved C/R data
and restart computation using that saved state. C/R constitutes
a large fraction of I/O time in HPC workloads [19].

In addition to C/R, BBs can act as a staging area between
compute nodes and the PFS to support I/O operations. Pre-
staging of input data to BBs can help applications incur less
I/O time for reading input data compared to reading from the
slower PFS, which is prone to issues such as inter-application
interference [4]. Staging data in BBs can support operations
such as in-transit data processing [20], which may include data
visualization or analysis. Similarly, it can facilitate efficient
sharing of transient output data between multiple workflow
components by providing fast intermediate storage for shared
data. The BB can also be used as a hidden cache for PFS access.
In that case, data will be temporarily staged in the BB while it
moves in either direction between the PFS and compute nodes.

All of the above use cases involve data transfers between
1) applications and BB, and/or 2) BB and the PFS. There can
also be traffic across BBs, e.g., during in-transit data processing

417417417

or data reorganization. All of these traffic patterns can cause
interference. Without robust management, interference can result
in contention and I/O performance degradation.

C. Interference in SSD
When applications use SSDs, they can avoid direct interaction

with the magnetic disk-based PFS where contention and per-
formance variability is an issue [4] and the seek and rotational
latency of disk magnify the interference effects [21]. Instead,
when using the SSDs, applications can avoid these two sources
of latency resulting in much faster I/O performance. Since BBs
use SSDs instead of magnetic disks, the community is expecting
reduced I/O contention and performance variability resulting
from inter-application interference.

However, SSD performance also suffers with interference
under shared access. Researchers have shown that I/O interfer-
ence can occur between both read and write I/O traffic in SSDs
[22]. This occurs due to contention for service of concurrent
I/O operations and due to the overhead of garbage collection.
For NAND-based flash chips, data must be erased before any
new data can be added to a block with existing data. This
operation can interfere with I/O traffic since both will need to
access storage locations in SSDs.

D. Need for BB Scheduler
HPC systems contain multiple schedulers at different layers.

The most visible is the batch scheduler that manages execution
of jobs on the cluster by selecting compute nodes and launching
specific jobs on them. Another is the I/O scheduler for the PFS,
which may run at storage severs to manage I/O requests at a
given server. Multiple storage servers may even coordinate with
each other to synchronize their scheduling of different jobs. In
addition, we may also have a higher level global I/O scheduler
that may schedule I/O steps of different jobs instead of managing
I/O requests from individual I/O processes.

While such schedulers already exist in an HPC system,
we argue that we need a scheduling mechanism that actively
manages I/O traffic of BB system across workloads and
I/O requests. Scheduling BB I/O traffic can be done by a
dedicated BB scheduler or even be included inside a system-
wide I/O scheduler after making it aware of BB I/O traffic.

Current BB management software packages, DataWarp and
SLURM, focus on managing BB space capacity, but do not
provide strong support for interference management. DataWarp
provides mechanisms to control placement of space allocation
on BB nodes when a job starts and also supports policy options
that can be applied during placement including bandwidth and
interference. Under the bandwidth policy, a job is allocated as
many BB nodes as possible. Under the interference policy, a job
is allocated as few BB nodes as possible. In both cases capacity
requests are met. The goal of the bandwidth policy is to provide
higher aggregate BB bandwidth whereas the interference policy
aims to reduce inter-application interference due to sharing of
BB resources.

We evaluated the DataWarp strategies in Section I (Figure
1). We assume that I/O of each job is scalable across all BB
nodes available. Under the bandwidth policy, each job gets
a BB allocation across all BB nodes, which is same as the
baseline case, except in the baseline each job had isolated

access to the allocated BBs. With that experiment, we found
that the DataWarp strategies can have issues of performance
reduction under both the bandwidth and interference policies.
This indicates that we need a more robust mechanism to manage
interference in a shared BB system.

III. EXPERIMENTAL FRAMEWORK

In this section, we describe our experimental methodology
for evaluating BB scheduling policies empirically and with
simulation. We also show validation results for our simulator
from empirical experiments.

A. Empirical Tool
For our empirical experiments, we developed a benchmark

tool similar to IOR [23]. Our tool emulates the I/O behavior
of concurrently executing MPI applications, provides them
access to BB resources, and applies I/O scheduling to their BB
accesses. This tool is sufficient to meet our requirement for the
investigation in this paper — it generates situations of shared
access to BB resources from multiple applications resulting
in degraded I/O performance and controls the I/O requests
according to scheduling policies. Such an approach appears
elsewhere in the literature [24]. In a production environment,
the BB scheduler can be implemented as a system component,
e.g., as part of the BB management software.

1) Tool Design: We implemented the tool as an MPI program
written in C. We used MPI sub-communicators to partition ranks
into the needed roles, namely one sub-communicator for each
application and one for the scheduler. We used MPI messages
to communicate between the applications and the scheduler.

2) BB File System: We use the user-level BB file system
IBIO [11] and its C API for the applications to access the BB
nodes. IBIO uses RDMA for data transfers between the compute
and BB nodes. We have added a BB resource allocation layer on
top of the IBIO library, which manages mapping of BB nodes
to a given application at its start up and presents the individual
BB servers as a unified BB system.

3) Interactions: Each application uses a single process, which
we call the I/O coordinator, to talk to the scheduler. The
I/O scheduler uses its main process to manage communications
and runs a separate thread to perform scheduling.

When an application needs to access the BB, its I/O coor-
dinator sends the scheduler a request for access permission.
The I/O coordinator blocks while it waits for permission.
The scheduler thread schedules the new request. The token
management thread messages each waiting I/O coordinator in
turn as the schedule dictates indicating it is their turn to access
the BB. The application can then access the BB and then notifies
the scheduler after its I/O step is complete. The scheduler is
thus aware of the active BB access phase of each application.
It can utilize this information during scheduling, e.g., control
the number of applications that access BB at a given time.

In our tool, explicit messages are exchanged between the
applications and the I/O scheduler. However, in a production
environment, we expect that such coordination could occur
transparently to applications in I/O libraries or the file system. In
addition, this approach would also enable a robust mechanism for
tracking application BB access sessions. Should an application
that is currently allocated a portion of the BB pool fail, the

418418418

scheduler will be notified by the progression of the job script
allowing recovery of the lost token and reallocation to the
remaining scheduled applications.

B. Simulator
We design a deterministic discrete event simulator (DES)

to model access to a BB system from parallel applications.
We employ a simulator because it enables us to explore the
performance of large-scale systems not yet available, e.g., Trinity.
Here we describe how we model the different components and
functionality of a BB system in the simulator.

1) I/O Request Model: We model I/O requests from HPC
applications by using these parameters: number of I/O processes,
data output per I/O process, and request arrival time. Such
I/O requests represent I/O steps of applications such as writing a
checkpoint data set. Each application also requests BB resources
in the form of (a) a storage capacity, which can be equal to or
more than its total output data size, and (b) a number of BB
nodes across which the capacity should be allocated. To create a
multi-application workload mix, we configure each application
individually.

2) System Model: A BB system contains multiple BB nodes.
The resource allocator serves resource requests of jobs according
to requested capacity and BB node count. We use a round robin
policy to select BB nodes for jobs.

3) Execution model: We run the simulation in multiple
discrete steps. During each step, the system runs for a time
epoch between two event points. The events represent changes
such as arrival of a new I/O request, the start of execution of
a new I/O request, or completion of an active request on one
or more BB nodes. Each event can result in changes in the
active applications that share the BB resources. With a change
in sharing, change also occurs in the BB bandwidth available
to each active application. We track bandwidth available to
applications and length of time epoch for each step.

At the beginning of each step, we calculate I/O bandwidth
allocated to the running applications. We present the model
for computing the I/O bandwidth distribution in Section III-B4.
We also track the next system event and use that to compute
the simulation time epoch for that step. For the next system
event, we use the earliest event across all the BB nodes. Using
a common system event helps synchronize the progress of
simulation across all the system components.

4) BB Bandwidth Distribution Model: Given a BB node and
a set of jobs concurrently accessing it, the bandwidth that each
job gets depends on the I/O attributes of all the jobs involved.
In this paper, we follow a linear bandwidth division model
where at a given time, the I/O bandwidth of a BB node is
evenly distributed across all the I/O processes (across all the
concurrent jobs) accessing it. We decided to use this model
based on our observation of I/O performance from the Catalyst
cluster. Using this model, the I/O bandwidth for each active
I/O process accessing a BB node B is computed as

IOP BWB =
peak bandwidth of B

∑
∀ job j with active I/O on B # I/O procs. of j

Then the I/O bandwidth an application A gets on this node is:

bandwidthA = (# of I/O procs. of A) × IOP BWB

TABLE I: Compute and BB System Simulation Parameters
Total compute nodes 19000 Total BB nodes 576
Compute node memory 128 GB BB Node Space 6 TB
Compute node processor 32 cores BB node bandwidth 5 GB/s

5) Application I/O Cost Model: To compute the I/O cost
for each application writing data to a a shared BB system, we
assume an application is allocated BB resources across N BB
nodes and is writing data d1, d2, . . . dn concurrently to the N
BB nodes. The total time for an application I/O step is the
maximum of the time it takes to write data across all of its BB
nodes (i.e., max(Td1, Td2, . . . Tdn)). Under our DES simulation
model, writing of data to each BB node happens in multiple time
epochs, t1, t2, . . . tj , . . . tm for writing di to BB node Bi. Here,
the application can receive different BB bandwidths in each
time epoch, bw1, bw2, bwj ,. . . bwm. The bandwidth for each
epoch will determine how much data from di will be written
to Bi. The total time taken to write data di is IOTbi =

∑
tj .

In the presence of scheduling, a job may incur wait time in
the I/O queue, which can happen for any time epoch tj . For
a time epoch that represents wait time for an application, the
corresponding bandwidth bj will be zero, which means that no
data will be transferred during that epoch.

C. Evaluation Metric

As a primary metric for evaluating I/O performance, we use
the total time to complete an I/O step for individual applications
as well as aggregate I/O time across the concurrent applications.
Reduction in these values reflects reduction in wall-clock time
for the applications.

D. Test-Bed

1) TestBed for Empirical Experiments: We run our exper-
iments on the Catalyst cluster [25] at Lawrence Livermore
Laboratory. Each of its compute nodes has an Intel Xeon E5-
2695 v2 processor with 24 cores and an 800 GB Intel 910 local
NVM. It has an InfiniBand QDR (QLogic) interconnect. We
use a subset of Catalyst cluster nodes to represent a BB system
and use another subset as compute nodes to run applications.

2) Parameters for Simulation Experiments: For the simula-
tion experiments, we parameterize the simulator with values
similar to those of the compute environment and BB system of
Trinity. We present the system parameterization in Table I.

E. Simulator Validation

We are specifically interested in capturing inter-application
interference during BB access. So, we will focus on capturing
such interference during the validation.

To validate our model, we observe the I/O overhead for a job
instance when it runs concurrently with other instances of the
same job. We run a job under these situations: (1) run job alone,
(2) run 2 instances together, and (3) run 4 instances together. We
compare the simulation results with empirical results measured
under similar configurations on our test bed, Catalyst. For both
cases, the I/O overhead is:

I/O Overhead =
I/O TimeCurrent Config

I/O TimeAlone
.

In Figure 4, we see that for both simulation and the empirical
measurements, there is similar behavior for the increase in

419419419

#
$##
%##
&##
'##

(###
($##
(%##

(& $)
&

)(
$

(#
$% (& $)
&

)(
$

(#
$% (& $)
&

)(
$

(#
$% (& $)
&

)(
$

(#
$% (& $)
&

)(
$

(#
$% (& $)
&

)(
$

(#
$%

#�)� $� '� *$� ($'�)($�

��
�
��
��
�	

����
���������
��
�	����
 ����
�����
�	�����

�����$�����	 �����(�����	 �����������

(a) Job IO times.

�
���
��+
��,
��-

 ��

 , �.
,

.
�

 �
�+ , �.
,

.
�

 �
�+ , �.
,

.
�

 �
�+ , �.
,

.
�

 �
�+ , �.
,

.
�

 �
�+ , �.
,

.
�

 �
�+

��.� �� -� ��� ��-� .���

��
��
	

��
�

��
��

/0
�

���
���������
�������/��� ���
���������
��
�

���	

��� �!!�� ���	

��� �!!�� ���	

��"#!!��

(b) Job efficiency under periodic I/O of 1 hour interval.

Fig. 3: Simulation of effect of BB allocation strategies on jobs on Trinity.

�

�

!

�

���������� ���������� 	���������

�

�

��
��

�
��
�

����
���������������������
��$������� ����	�����
���	�����

��
�������� ������
��������	

���
����	�
�
���
����	����
����������� 	
�
�
�
������������ ������
���������� �

Fig. 4: Simulation and empirical results of I/O overhead for a
job under interference between job instances.

I/O overhead with increasing concurrency between job instances,
e.g., nearly 2× increase in I/O overhead with 2× increase in
job instances. We ran five trials for the empirical measurements.
Here we observe variation across different job instances. The
variation is expected and arises from various factors such as
contention between concurrent I/O traffic, non-constant SSD,
and network performance.

The simulation performance behavior is sufficient for our
experiments in this paper. It captures the case where SSD is well
behaved and there is absence of measurable network overhead
or interference. Here our hypothesis is that even when the
BB system is well behaved, interference can occur between
applications and that scheduling will be able to manage it. If we
were to consider added contention and performance variability
in SSDs and network, the effect of scheduling would be even
higher as it can isolate I/O traffic to get rid of such interference
between I/O streams of different applications.

IV. BB PERFORMANCE STUDY

In this section, we further motivate our study of scheduling
policies for BBs. First, we analyze the performance under dif-
ferent BB allocation policies over a range of job configurations.
Then, we collect empirical results to observe the effect of inter-
application interference on a BB hardware system. This also
serves as further validation of our simulator of BB interference.

A. BB Allocation Policies
In this section, we analyze the effect of two allocation policies

from Section II-D: the interference policy and the baseline, fully
isolated policy. For the interference policy, we evaluate two cases:
1XAlloc: select the minimum number of BB nodes that provides
capacity to store a job’s output; and 2XAlloc: select BB nodes
similar to 1XAlloc, but provide double space capacity. This
simulates the scenario where a job may reserve more space than
it needs for a single I/O step. Next we have the baseline strategy,
FullBB: select all BB nodes in the system for each job. In these
experiments, FullBB is also equivalent to the bandwidth policy

� � �� �� �� ��

"���
"�����"����
"�����"� ���

"�����"����"� ���
"���

"�����"����
"�����"� ���

"�����"����"� ���
"� ��

"� ����"����
"� ����"����

"� ����"����"����

���������	
��

��
��
��
��
�	
��
�

��
�

��
���

��

��
�	
��

��� ���� ���� ��	��

�
����	
 �� �� �	�

Fig. 5: Effect of BB interference between three jobs running
on Catalyst cluster.

�

�

�

�

���� ������������ 	
���
������ ����
��������

�
���
��
��
�
��
��
��
�

�����
 ����������������� ������

�
����
�
���	
�
����

����
���
�		
��� ��
���� ��
���� ��
����

���� !!���� � �

������	
��
� ������ ������ �

������
��
� ������ ������ �

��������
��
� ������ ������ ������

Fig. 6: Effect of BB interference between jobs under varying
level of BB nodes sharing, on Catalyst cluster.

from Section II-D when there is no inter-job BB interference
and each job can scale to all BB nodes. For this simulation, we
use parameters for Trinity as described in Table I. We configure
job instances using varying numbers of I/O processes and data
output per process.

We can see the effect of allocation strategies in I/O time in
Figure 3a. The figure shows that jobs complete their output
phases significantly faster under FullBB compared to 2XAlloc
and 1XAlloc. In addition, 2XAlloc performs better compared to
1XAlloc, e.g., half the time for job with 8k processes and writing
512 MB data per process. Low I/O time is obtained when a job
gets a BB allocation across a larger number of BB nodes, thus
getting higher aggregated I/O bandwidth. This means that the
number of BB nodes allocated varies significantly under these
allocation strategies.

Figure 3b shows the efficiency for the jobs with periodic
I/O phases of one hour. Periodic I/O behavior is common in HPC
simulations, where the jobs write checkpoint and visualization
data after a certain number of simulation steps. Here, efficiency
is the measure of fraction of total time a job spends in science:
ComputeTime / (ComputeTime+IOTime). We see that with
1XAlloc, jobs can get low I/O efficiency, e.g., 76% for a job
with 32k I/O processes, and writing 512 MB per I/O process.

420420420

However, under 2XAlloc, performance is higher in most of the
cases. Here each job gets more than 85% efficiency. Similarly,
under FullBB, we get more than 95% efficiency in all cases.
The reduction in efficiency with the interference policy will be
more significant — mainly under 1XAlloc — for the jobs whose
I/O steps repeat more frequently than one hour. Variation in
I/O frequency across HPC jobs is a common scenario [5].

Summary for BB Allocation Policies: Three lessons are
revealed. First, allocation strategies based only on capacity
needs may not provide enough I/O bandwidth for jobs. Even
though it has the advantage of localizing the allocation of a job
to fewer BB nodes, the job may not get sufficient I/O bandwidth
or performance. Second, if we look at 2XAlloc, we see jobs
get enough I/O performance under isolated execution. However,
there are a limited number of BB nodes in the system, e.g., 576
in the case of Trinity. This means that multiple jobs need to
share BB nodes with each other and therefore interference can
occur. Third, the allocation of a larger number of BB nodes
(e.g., FullBB) consistently performs better. This performance
will decrease in the presence of interference, but even in presence
of interference, it may still be higher that under capacity
based allocation, as seen in Figure 1. We argue that, with
proper management techniques, we can reduce the overhead of
interference in a shared BB.

On future HPC systems, it is likely that BB allocations will
be tailored to the needs of individual jobs. So, different jobs
may get BB allocations striped across a varying number of BB
nodes, where striping decisions may be based on various factors
such as QoS needs and scalability of I/O operations. This can
even change elastically at runtime to adjust the performance
provided to a job. Deeper analysis of BB allocation strategies
is a subject for future work. For the rest of this paper, we
assume that each job will get allocations on a strict subset of
BB nodes.

B. Interference in BB of Catalyst Cluster

Here, we conduct two empirical experiments. First, we use
three different applications that share all BB nodes, and then we
run multiple instances of one application and vary the degree
of sharing of BB nodes.

For the first experiment shown in Figure 5, we use MPI jobs:
J24p, J96p, and J384p, with 24, 96, and 384 processes and
running on 1, 4, and 16 Catalyst nodes respectively. First we
run each job alone (none), second we run pairs of jobs, and
finally run all three jobs together (all). Under each configuration,
the jobs concurrently write data to the BB.

In Figure 5, we observe that under concurrent access each
job faces slowdown in its I/O time by varying factors under
different sharing configuration. The worst slowdown is observed
when all jobs are running concurrently (case all in Figure 5).
The three applications experienced I/O slowdown by factors
of 5.2×, 3.3×, and 1.2×, respectively. The aggregate I/O time
for the three jobs increased by a factor of 2×. It is clear that
the majority of the slowdown is because of sharing the SSD
bandwidth between the jobs and there does not seem to be
observable impact due to other factors such as contention or
performance variability in SSDs and network.

In the second empirical experiment, we run three job instances,

each configured with 192 processes. Each instance accesses
multiple BB nodes and share a number of BB nodes with
other jobs at varying levels. We present the BB allocation,
sharing configuration, and results in Figure 6. We observe that
interference can occur when two jobs fully or partially share
the BB system (e.g., both instances under 2 Ins-1Share and
instances J Inst2 and J Inst3 under 3Ins-MixShare). But, when
two jobs do not share any BB nodes (2Ins-NoShare), they did not
interfere with each other, which means that network interference
is not creating measurable I/O overhead for these jobs. We use
these observations as a guiding factor for our sharing aware
serialization algorithm, presented in Section V-B2.

Summary of BB Interference: The message from our empirical
experiments on Catalyst is that BB interference can have a major
impact in I/O performance with observed slowdowns as much
as 5.2× in our experiments. The interference can occur under
various allocation and sharing policies, e.g., a bandwidth policy
and also with the more realistic case of a varying number of
BB nodes allocated across different jobs.

V. PROPOSED BB SCHEDULING

"���������
�(��$������

	
���
���
�������������
��������	�
��
�����������

������
���
	
�
�
�
�������*���(#�
�������$���*�
�������(��(�

���
������
��

�
����
���
���
����

�
�������*���(#�
�������$ ��*�

��
����
����� �����
�
�$����� ���! ���
�(����(���$ ���

Fig. 7: BB interference management using I/O scheduling.

In this section, we propose a scheduling framework for a BB
system (Figure 7). We assume a global I/O scheduler for the
BB system similar to ones proposed for PFSs [4]. Applications
submit access requests to the scheduler when then need to
access the BB. For each application, its single process, acting
as an I/O coordinator, will communicate with the scheduler to
submit an I/O request. The scheduler stores the I/O requests
in its global I/O queue, schedules for execution the requests
present in its queue, and answers queries from applications
for access token. The access token is used as a mechanism to
control which application actively acesses the storage servers
at a given time [4].

This global scheduler can use high-level information about
the applications and system to improve its scheduling decisions.
In this paper, we assume that it is aware of the BB nodes
allocated to individual applications. BB allocation is done by
the BB allocator software, e.g., DataWarp and SLURM.

The scheduler may face performance challenges because it
has to manage BB access traffic from all applications. Multiple
optimizations can be applied to mitigate this challenge. In
the design considered in this paper, only a single process
(I/O coordinator) from each application talks to the scheduler
keeping the load low. In addition, we can also implement the
scheduler as distributed and hierarchical software, which will

421421421

make this layer highly scalable. Such further optimizations are
subject for future work.

�� ��
�� ��

������
�������

��
�����
��
����������	
�	��������	

��
�	�	
��

�����
������������������
��������
������
�	��������	

�
�

�
	

�������
��
���
��������
����������	
�	��������	

�
�

�
	

�������������� ���������
��

!!�����������!!	 !!�����������!!	 !!�����������!!	

Fig. 8: Illustration- interference during BB access by two jobs,
and effect of local and coordinated serialization.

�� ��
�"

�"

�� ��
�"

�"

#�����������#���������
��#�����
��#��
�"#�"�
�"#�"�

#��
����� �
��#���������
��#�����
��#��
�"#�"�
�"#��

��������������"�������������"

��#�����������	�
����
������

�����������������������������

Fig. 9: Illustration- system wide and sharing aware serialization.

Next we discuss the BB access traffic control techniques, and
scheduling policies we use in this paper.

A. Traffic Control and Coordination

Inter-application interference between HPC applications can
be controlled effectively by using coarse grained access control
[4], [24]. This means controlling high level accesses, such as
an I/O step to write a complete checkpoint dataset, instead
of controlling low level accesses, such as I/O requests from
individual I/O processes or writing of intermediate data chunks.
We utilize such coarse grain traffic control to manage BB
accesses from applications.

While scheduling accesses to BB system, multiple BB nodes
should be coordinated with each other to make synchronized
progress for an application’s I/O step (Figure 8). This will
prevent I/O stragglers, i.e., the few, slow I/O processes that can
slowdown the whole I/O step, despite fast I/O completion by
a majority of the processes. Under our coarse-grained traffic
control, coordinated scheduling will be done implicitly because
at any given time, all BB nodes are serving the same application.

B. Scheduling Algorithms

Now we present scheduling algorithms we use to manage
BB access traffic.

1) Full Serialization Algorithm: In this paper, we first use
coarse-grained serialization [4] as a technique to schedule coarse
grained BB accesses. Under this scheme, each BB node serves
one application at a time and allows it to complete writing all
of its output data before switching to another application.

Under this algorithm, upon arrival of an application I/O step,
its I/O request is stored in a global I/O queue. Then during
the scheduling step of the scheduler, a single I/O request is
selected from the queue for execution. Selection is based on
the scheduling policy used in the system. In this paper, we use:
(a) No Scheduling (NS), (b) First come first serve (FCFS) and
(c) Shortest I/O job first (SJF).

In a production environment, we may relax this approach a
little by allowing BB access to more than one application at a
time and then control the number of concurrent applications and
the fraction of total I/O bandwidth each concurrent application
receives [21], [26]. In addition, scheduling is in itself a rich area.
We can borrow ideas from that domain to effectively handle
different situations. For example, we can apply knowledge
of wait time in the I/O queue to avoid job starvation or
use job’s execution profile to improve its overall performance
[27]. However, detailed and exhaustive analysis of alternative
scheduling policies for BBs is out of scope in this paper.

Algorithm 1: BB I/O scheduling with sharing awareness

Data: PendingIOQueue, ActiveIOQueue
Result: Updated PendingIOQueue, ActiveIOQueue

1 IOQueueCopy = PendingIOQueue ;
2 while IOQueueCopy is not empty do
3 sort PendingIOQueue using current schedl policy;
4 IOReqCand = PendingIOQueue[0] ;
5 if IOReqCand does not conflict with any request in

SelectedIOQueue then
6 add IOReqCand to ActiveIOQueue;
7 end
8 remove IOReqCand from IOQueueCopy;
9 end

10 remove IOReq ∈ ActiveIOQueue from
PendingIOQueue;

2) Sharing Aware Serialization Algorithm: We present our
sharing aware serialization algorithm in Algorithm 1. This
algorithm is a refinement of the full serialization algorithm. Here,
we leverage the fact that different applications access different
numbers of BB nodes such that an application may access only a
subset of the BB nodes in the system. An application A will not
face interference from other applications if the latter only access
BB nodes other than the ones that A is accessing. Allowing
access to such unused BB nodes can increase utilization and
BB nodes, and as a result, increase system throughput (Figure
9). Here, we are making an assumption that the system has
sufficient network bandwidth and interference in the network
access is not significant.

VI. EMPIRICAL EVALUATION

During our empirical evaluation of scheduling techniques,
we use the jobs configurations J24p, J96p, and J384p, as in
Section IV-B, and 8 BB nodes setup on the Catalyst cluster.
We apply a system-wide full serialization algorithm, which is
a good fit for these jobs since they access all BB nodes. We
run the experiment once for each of the scheduling policies:
NS, FCFS, and SJF. We ran five trials for each experiment and
report average values.

422422422

!

�!

"!

�!

�"�� ���� �����

��

�
�!

�
��

��

���� ����
 	!

�
! !�

(a) Measured data write times.

�

��

�

��

��

����� ��
�
� ��

��
��

���
�

��
!�

��
���

��
��
��

��"���!������!�!��

(b) Aggregate I/O time across 3 jobs.

Fig. 10: Effect of BB I/O scheduling policies for three concurrent
MPI jobs running on the Catalyst cluster.

We present our result in Figure 10. Our result demonstrates
that there is no beneficial performance improvement under FCFS
for this experiment. Here, J384p runs faster, similar to the case
of running alone, but the performance penalty for J24p and
J96p are higher. Their I/O time increases by factors of 8.7× and
4.4× respectively compared to the case of running alone. This
is because J384p arrives first and it writes more data compared
to J24p and J96p taking longer to complete its I/O step. This
means that J24p and J96p wait longer, which is evident in its
I/O completion time.

SJF performs best for this workload set. Here, the I/O time
for the jobs are 1.05×, 1.5× and 1.26× the time of running
alone. This is a significant improvement from the interfering
cases (NS), which had the I/O increase factors of 5.15×, 3.33×,
and 1.2× respectively for the three jobs. The benefit is also
clearly reflected in the aggregate I/O time for the jobs (Figure
10b). Under SJF, the aggregate time increased to 1.28× that
under isolated runs whereas under NS, it was 2.02×. The major
finding from this experiment is that with proper scheduling, the
interference of a shared BB system can be reduced significantly.

VII. SIMULATION BASED EVALUATION

In this section, we run simulation experiments to evaluate
the effect of scheduling on BB I/O traffic on large scale HPC
clusters. First, we consider the case when all the jobs in a given
workload are allocated capacity across all of the BB nodes. This
is a special situation that may not necessarily be common in
reality. To capture a more realistic case, we conduct a second
experiment where each job has its BB space allocation placed
across a subset of BB nodes.

A. Simulation Configuration
We use the system configuration in Table I. We design

I/O workloads that are representative of HPC I/O workloads.
We present the configuration of the individual jobs in Table II
and the concurrent workload mixes of these jobs we used in our
experiments (Table III). Jobs in each workload mix share the
BB system. The choices of workload parameters were guided
by I/O characteristics of HPC jobs from supercomputers, such
as described for Intrepid at Argonne National Laboratory [5].
We set the number of BB nodes in the BB system to 128 and
limit compute node count to under 6000 for all the workloads.

Here, during each simulation, we take a workload set and run
the I/O requests from all of its jobs. Since the jobs are not related
to each other, the arrival order of their I/O requests are also not
related. However, the arrival order can affect performance under

TABLE II: Jobs Configurations for Simulation Workloads

Job
#
procs

compute
nodes(nCN)

data/proc # BB
Nodes

nCN
per BB

data write
per BB

J1 4096 128 1024 MB 128 1 32 GB
J2 16384 512 512 MB 128 4 64 GB
J3 65536 2048 128 MB 128 16 64 GB
J4 4096 128 1024 MB 16 8 512 GB
J5 4096 128 2048 MB 16 8 128 GB
J6 16384 512 512 MB 32 16 256 GB
J7 65536 2048 512 MB 64 32 512 GB

TABLE III: Workloads Configuration for Simulation.

Name Mix w/ full stripe Name Mix w/ partial stripe
W1 1J1 + 1J2 + 1J3 W7 1J4 + 1J5 + 1J6 + 2J7
W2 2J1 + 2J2 + 2J3 W8 10J4 + 1J5 + 1J6 + 1J7
W3 0J1 + 2J2 + 4J3 W9 1J4 + 10J5 + 1J6 + 1J7
W4 2J1 + 4J2 + 0J3 W10 1J4 + 1J5 + 5J6 + 1J7
W5 10J1 + 2J2 +1J3 W11 0J4 + 10J5 + 0J6 + 2J7
W6 2J1 + 10J2 + 0J3 W12 10J4 + 10J5 + 2J6 + 1J7

an I/O scheduling policy, e.g., FCFS, where requests are given
priority based on their arrival order. To counter these effects,
we randomize the I/O request arrival order across the jobs and
repeat 10 trials. We report average performance across all the
trials. We measure the aggregate I/O time across all jobs as the
measure of performance.

B. Job Mix with Full Striping
In this experiment, we simulate execution of each workload

W1 through W6 one at a time. Each job in the workloads has
its BB allocation fully striped across all the 128 BB nodes. We
use system wide I/O serialization and apply scheduling policies:
NS, FCFS and SJF. We present our results in Figure 11.

We observe that for all workloads, aggregate I/O time is
better when scheduling is applied. Even a simple policy such
as FCFS beats NS. SJF performs best, e.g., reduces aggregate
I/O time for workload W1 by 62% compared to NS.

This tells us that scheduling can be an effective mechanism to
reduce effect of interference for jobs when their BB allocation
is striped across all the BB nodes and scheduling in terms of
system wide coarse grained serialization of I/O steps of jobs is
a good fit.

C. Job Mix with Partial Striping
For this experiment, we use workloads W7 through W12.

Here, jobs in each workload are allocated a subset of the BB
nodes with a higher number than that given by the interference
policy and lower than that by our baseline policy from Section
II-D. We use a round robin policy to assign BB nodes to the
jobs. This represents a more generic and realistic BB resource

�

���

 ��

!"��

!#��

�!
$�
%�

�

#�

�!
$�
%�

�

#�

�!
$�
%�

�

#�

�!
$�
%�

�

#�

�!
$�
%�

�

#�

�!
$�
%�

�

#�

�! �" �& �� �' �#

��
��

��
���
��
	�

�

�����
������������������ �����
���������

Fig. 11: Aggregate I/O time with full striping.

423423423

�
����
����
����
 ���
!����

��
""
#�
(�
�$

��
""
%&
%�

��
""
�'
%

��
"%
&%
�

��
"�
'%

��
""
#�
(�
�$

��
""
%&
%�

��
""
�'
%

��
"%
&%
�

��
"�
'%

��
""
#�
(�
�$

��
""
%&
%�

��
""
�'
%

��
"%
&%
�

��
"%
&%
�

��
""
#�
(�
�$

��
""
%&
%�

��
""
�'
%

��
"%
&%
�

��
"�
'%

��
""
#�
(�
�$

��
""
%&
%�

��
""
�'
%

��
"%
&%
�

��
"�
'%

��
""
#�
(�
�$

��
""
%&
%�

��
""
�'
%

��
"%
&%
�

��
"%
&%
�

�(� �) �!� �!! �!�

��
�*

��
��(
��
	�

�

���������������������������� ���������������

Fig. 12: Aggregate I/O time with partial striping.

allocation strategy where the number of BB nodes for each
job may be decided based on various factors such as BB
bandwidth requested by individual jobs, their I/O scalability, or
load balancing by the resource manager. A detailed study of
such an allocation model is future work.

We present our results in Figure 12. Unlike the case of full
striping, we observe that aggregate I/O increases (worsens) for
all scheduling policies under system wide serialization (Sys-
*). Performance improves only in the case of sharing aware
serialization (SA-*). We observe improved performance (reduced
aggregate I/O time) for all workloads under both SA-SJF and
SA-FCFS. Moreover, SA-SJF worked better with the best result
of 36% improvement for W8.

Here, each job is accessing only a subset of BB nodes in
the system, not all. With system-wide serialization, when a job
is accessing the BB system, it is keeping idle the BB nodes
that are not assigned to it. When we add sharing awareness, we
serialize jobs only if they share BB nodes with each other. Jobs
that do not share any BB nodes with each other run concurrently.
That way we improve utilization of the BB system, and as a
result, improve throughput of the BB system.

From this experiment, we observe that when allocations of
jobs are striped across subsets of BB nodes in the system,
sharing aware serialization is effective in scheduling the BB
I/O traffic. Our conclusion is that we need to adapt scheduling
algorithms to fit to the resource usage scenario of a BB system.

VIII. RELATED WORK

BB is a new technology and therefore existing work on this
topic is fairly sparse. In an early effort, Liu et. al [5] showed
that the BB can act as an effective cache while writing data
to the PFS. Bent et al. [28] showed that the BB can help
reduce I/O jitter in HPC applications. Various efforts study
software systems design for BB access [2], [11], [12]. Fang
et al. [13] showed the necessity of managing the allocation of
the limited life cycle of SSDs of BBs to different applications.
More recent work includes BB management products DataWarp
[7] from Cray and BB support from SLURM [9]. These are
more relevant to us in terms of goals. These works provide
mechanisms to manage resources of a shared BB system.
SLURM focuses more on capacity management. On the other
hand, DataWarp provides a placement based mechanism to
reduce inter-application interference. It provides an optimization
mode where a job gets BB capacity across fewer BB nodes,
and as a result, shares BB nodes with fewer other jobs. In this
work, we have shown the need for more robust mechanisms
than these and investigated scheduling as one such mechanism.

HPC I/O scheduling has been studied in the context of parallel

and distributed file systems and techniques have been applied
at various levels of the system. In one example, Wachs, et al.
[21] perform I/O time slice management across sharing jobs to
manage Quality of Service (QoS) across multiple jobs. Similarly,
Song, et al. [29] applied coordination across PFS servers to
synchronize their time slice and serve one application at each
time slice. This technique helps reduce interference in PFS and
also achieve QoS in HPC I/O [26]. Inter-application interference
can also be managed by using a high-level scheduler treating
HPC I/O traffic in the form of coarse grained access, e.g.,
write data during a checkpoint step. These accesses may be
coordinated by using a system wide scheduler [4], [30] or by
direct communication between applications [24]. A system wide
I/O scheduler can utilize extra information from the HPC jobs
and effectively mange I/O traffic, e.g., use execution profile of
applications to provide system wide optimization and global
optimization to the applicaitons [27]. These techniques are
relevant for a BB system as well. We have applied some of
these techniques in this paper, e.g., BB server coordination and
coarse grained scheduling.

Management of shared resources is a rich topic and we can
find relevant work in other domains as well, e.g., managing
access to a shared memory system [31], resource allocation
in grid computing [32], and load balancing in parallel and
distributed file systems [3], [33]. We may be able to borrow
ideas from these areas to better solve interference and resource
management problem in the BB system.

IX. CONCLUSION

In this paper, we investigated the problem of inter-application
interference in the context of burst buffer (BB) systems.
We identified that, even though BB provides much higher
I/O bandwidth than PFS, and low contention storage devices, e.g.,
SSDs, applications still suffer from interference during shared
accesses. We demonstrated that we can use I/O scheduling as
an effective mechanism to reduce the effect of interference of
HPC jobs. We also presented a scheduling technique that was
adapted to the usage model of BB, and found that it could
improve I/O performance for BB systems.

In the future, we first plan to perform a more detailed inves-
tigation of scheduling BB traffic, with the goal of developing
scheduling techniques specifically for BB. In addition, we also
plan to investigate resources allocation techniques to effectively
manage bandwidth and capacity of a shared BB system.

X. ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-685595). It was also supported by the National
Science Foundation under Grant No. 12292820.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] “Lustre: A Scalable, High Performance File System,” http://www.lustre.org,
[Online; accessed 9-Dec-2013].

[2] J. Lofstead and R. Ross, “Insights for Exascale IO APIs from Building
a Petascale IO API,” in 2013 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov
2013, pp. 1–12.

424424424

[3] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Performance of
Petascale Storage Systems,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2010 International Conference for, 2010, pp.
1–12.

[4] S. Thapaliya, P. Bangalore, J. F. Lofstead, K. Mohror, and A. Moody,
“IO-Cop: Managing Concurrent Accesses to Shared Parallel File System,”
in ICPP Workshops. IEEE Computer Society, 2014, pp. 52–60.

[5] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and
C. Maltzahn, “On the Role of Burst Buffers in Leadership-Class Storage
Systems,” in Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, 2012, pp. 1–11.

[6] “Trinity-Overview,” http://www.lanl.gov/projects/trinity/ assets/docs/
trinity-overview-for-web.pdf, [Online; accessed 7-Sept-2015].

[7] “Cray DataWarp User Guide,” http://docs.cray.com/books/S-2558-5204/
S-2558-5204.pdf, [Online; accessed 1-Feb-2016].

[8] “Cori-Overview,” https://www.nersc.gov/users/computational-systems/
cori/, [Online; accessed 7-Sept-2015].

[9] “Slurm Burst Buffer Guide,” http://slurm.schedmd.com/burst buffer.html,
[Online; accessed 6-Feb-2016].

[10] “Trinity-Burst Buffer Use Cases,” https://www.nersc.gov/assets/
Trinity--NERSC-8-RFP/Documents/trinity-NERSC8-use-case-v1.2a.pdf,
[Online; accessed 7-Sept-2015].

[11] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “A User-Level InfiniBand-Based
File System and Checkpoint Strategy for Burst Buffers,” in 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Chicago, IL, USA, May 26-29, 2014, 2014, pp. 21–30.

[12] T. Wang, S. Oral, Y. Wang, B. W. Settlemyer, S. Atchley, and W. Yu,
“BurstMem: A High-Performance Burst Buffer System for Scientific
Applications,” in 2014 IEEE International Conference on Big Data, Big
Data 2014, Washington, DC, USA, October 27-30, 2014, J. Lin, J. Pei,
X. Hu, W. Chang, R. Nambiar, C. Aggarwal, N. Cercone, V. Honavar,
J. Huan, B. Mobasher, and S. Pyne, Eds. IEEE, 2014, pp. 71–79.

[13] A. Fang and A. A. Chien, “How Much SSD Is Useful for Resilience in
Supercomputers,” in Proceedings of the 5th Workshop on Fault Tolerance
for HPC at eXtreme Scale, FTXS 2015, Portland, Oregon, USA, June 15,
2015, N. DeBardeleben, F. Cappello, and R. L. Clay, Eds. ACM, 2015,
pp. 47–54.

[14] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “TRIO: Burst Buffer
Based IO Orchestration,” in Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, 2015, pp. 194–203.

[15] S. Park and K. Shen, “FIOS: A Fair, Efficient Flash I/O Scheduler,”
in Proceedings of the 10th USENIX Conference on File and Storage
Technologies, ser. FAST’12. Berkeley, CA, USA: USENIX Association,
2012, pp. 13–13.

[16] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“DataStager: Scalable Data Staging Services for Petascale Applications,”
in Proceedings of the 18th ACM international symposium on High
performance distributed computing, ser. HPDC ’09. New York, NY,
USA: ACM, 2009, pp. 39–48.

[17] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There Goes
the Neighborhood: Performance Degradation Due to Nearby Jobs,” in
2013 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2013, pp. 1–12.

[18] J. F. Lofstead, I. Jimenez, and C. Maltzahn, “Consistency and Fault
Tolerance Considerations for the Next Iteration of the DOE Fast Forward
Storage and IO Project,” in ICPP Workshops. IEEE Computer Society,
2014, pp. 61–69.

[19] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing System,”
in 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2010, pp. 1–11.

[20] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar,
N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA - Preparatory Data
Analytics on Peta-Scale Machines,” in Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, April 2010, pp. 1–12.

[21] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger, “Argon:
Performance Insulation for Shared Storage Servers,” in Proceedings of
the 5th USENIX Conference on File and Storage Technologies, ser. FAST
’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 5–5.

[22] S. Lee, T. Kim, K. Kim, and J. Kim, “Lifetime Management of
Flash-Based SSDs using Recovery-Aware Dynamic Throttling,” in
Proceedings of the 10th USENIX conference on File and Storage
Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012,
W. J. Bolosky and J. Flinn, Eds. USENIX Association, 2012, p. 26.

[23] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the
I/O Performance of HPC Applications Using a Parameterized Synthetic
Benchmark,” in 2008 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2008, pp. 1–12.

[24] M. Dorier, G. Antoniu, R. B. Ross, D. Kimpe, and S. Ibrahim,
“CALCioM: Mitigating I/O Interference in HPC Systems through
Cross-Application Coordination,” in 28th IEEE International Parallel &
Distributed Processing Symposium, Phoenix, AZ, 2014.

[25] “Catalyst Supercomputer Specs.” https://computing.llnl.gov/?set=
resources&page=OCF resources, [Online; accessed 7-Sept-2015].

[26] X. Zhang, K. Davis, and S. Jiang, “QoS Support for End Users of
I/O-Intensive Applications Using Shared Storage Systems,” in 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Nov 2011, pp. 1–12.

[27] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications under Congestion,” INRIA,
Rapport de recherche RR-8519, Apr. 2014.

[28] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and
J. Woodring, “Jitter-Free Co-Processing on a Prototype Exascale Storage
Stack,” in MSST. IEEE Computer Society, 2012, pp. 1–5.

[29] H. Song, Y. Yin, X. H. Sun, R. Thakur, and S. Lang, “Server-Side I/O
Coordination for Parallel File Systems,” in 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC),
Nov 2011, pp. 1–11.

[30] S. Thapaliya, A. Moody, K. Mohror, and P. Bangalore, “Poster: Inter-
application Coordination for Reducing I/O Interference,” in SC ’13, LLNL-
POST-641538.

[31] M. Xie, D. Tong, K. Huang, and X. Cheng, “Improving System Throughput
and Fairness Simultaneously in Shared Memory CMP Systems via
Dynamic Bank Partitioning,” in High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, Feb 2014, pp.
344–355.

[32] M. B. Qureshi, M. M. Dehnavi, N. Min-Allah, M. S. Qureshi, H. Hussain,
I. Rentifis, N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu, and A. Y.
Zomaya, “Survey on Grid Resource Allocation Mechanisms,” J. Grid
Comput, vol. 12, no. 2, pp. 399–441, 2014.

[33] P. Scheuermann, G. Weikum, and P. Zabback, “Data Partitioning and
Load Balancing in Parallel Disk Systems,” The VLDB Journal, vol. 7,
no. 1, pp. 48–66, Feb. 1998.

425425425

