
SuperGlue: Standardizing Glue Components for
HPC Workflows

Jay Lofstead∗, Alexis Champsaur†, Jai Dayal†, Matthew Wolf†, Greg Eisenhauer†
∗Sandia National Laboratories †School of Computer Science, Georgia Institute of Technology

I. INTRODUCTION

Existing workflow engines, such as Kepler [2] and DAG-

Man [3], offer flexible ways to assemble components with rich

functionality to manage the control flow. What they both lack

is a way to easily deploy and manage the glue code required

to connect the various components. One example illustrat-

ing the complexities comes from the Oak Ridge Leadership

Computing Facility (OLCF). Kepler was used for several

workflows for the fusion simulation users. While the initial

goal was that an internal, expert resource would create the

workflow, including glue components, it should be able to be

maintained easily by the application scientists. Unfortunately,

the expert was required regularly as the configuration evolved

and scaled. The complexities of making and maintaining the

glue components as the output shifted and managing the

deployment was too high. Falling back to Python scripts

managed by the application scientist proved easier and faster to

maintain. While this approach using the parallel file system to

stage intermediate data was sufficient, it is quickly becoming

infeasible. The IO overhead for using the parallel file system is

exceeding acceptable runtime percentages forcing a reduction

in output and making scientific insights more difficult to

discover.

To address the performance mismatch, Integrated Appli-

cation Workflows (IAWs) are being developed. The easiest

way to think of these IAWs is the Unix/Linux shell pipe

operator to connect commands. The shell connects stdout of

one program to stdin of the next with the assumption that

each component in the chain can operate in this mode. For

tasks at this scale, this approach works well. For the scientific

workflows we are targeting, we have processes spread across

potentially 10,000s of nodes connected to other components

also running on multiple nodes.

Several efforts to work through some of the issues related

to IAWs have been investigated such as Catalyst, Libsim,

Glean, FlexPath, Bredala, and PreDatA. One key observation,

however, is that there is a lack of portability to the resulting

implementations; they require a great deal of tuning and/or

runtime placement control to make them function as desired.

This poster describes our work on SuperGlue, a set of

generic, reusable components for composing scientific work-

flows. These are distributed data analysis and manipulation

tools that can be chained together to form a variety of real-time

workflows providing analytical results during the execution of

the primary scientific code. Unlike existing components used

in IAWs, SuperGlue components do not have a fixed data

type. This one change enables using these components on

completely different kinds of simulations that share nothing

in their output format. Key to making this work is using

a typed transport mechanism between different components.

Many options exist for these transports and the particular

mechanism selected is not critical.

II. WORKFLOWS

We designed and implemented two realistic real-time work-

flows based on scientific codes having large user bases: the

LAMMPS Newtonian particle simulator [4] and GTCP, a

particle-in-cell Tokamak simulator [1]. While both of these

workflows eventually turn the simulation data into histograms

of certain quantities of interest, how they arrive at their final

result varies significantly. Creating similar types of results, and

this using some of the same components but in significantly

different ways, has allowed us to gain important insight into

how best to design glue components that can be used in a

wide variety of workflows.
In typical scientific workflows today, custom glue code

is written for selecting relevant data and writing it. Then,

potentially additional custom glue code will fix the histogram

calculation into something that can be rendered or saved as

desired. In this work, we demonstrate general, reusable com-

ponents capable of handling all three intermediate operations.

III. DESIGN

In this work, we offer some insight in the design of

generic data manipulation and analysis components from our

implementation of two workflows. These workflows are driven

by two different scientific codes, yet they share some of the

same components. We present our insights.

A. Insights: Overview
By evaluating the presented workflows and considering

other workflows with which the authors are familiar, four

particular insights are revealed.
1) To allow for the greatest variety of workflows, data

manipulation primitives and data analysis components should

be packaged in similar ways – that is, regardless of their

individual complexity, the pieces that make up these workflows

should export compatible interfaces as much as possible.
2) The ability to handle multi-dimensional data, along with

the consistent labeling of dimensions and quantities as meta-

data, allows for components that are highly adaptable and

simple to use.

2016 IEEE International Conference on Cluster Computing

2168-9253/16 $31.00 © 2016 IEEE

DOI 10.1109/CLUSTER.2016.90

170

3) While different types of components understand varying

levels of semantics, maintaining a high level of semantics

(i.e., labeling quantities and dimensions as much as possible)

early on and when passing through components that do not

necessarily require all of these labels allows for the most

functionality downstream.

4) Because programming languages understand multi-

dimensional data as being in a specific order in memory, there

is a need for glue components that re-arrange data and re-label

its dimensions without necessarily changing its size. Indeed,

when data is stored in a database on disk, it is simple to gain a

desired view of the data, for example by using SQL. However,

in the middle of a real-time workflow, data must be presented

to the components in a format that they expect and understand.

This requires a specific ordering of data in memory.

These insights guide the design for the reusable glue and

analysis components presented in this paper. From a general

perspective, designing a smaller number of components to

assemble workflows with finer step decomposition allows

for more general processing and more accurate performance

expectations than designing more numerous components each

having more complex functionality.

IV. REUSABLE COMPONENTS

This section provides greater details about the individual

SuperGlue components and how a small number of parameters

allow the them to operate (a) on a variety of different input

data formats, and (b) in a user-specified way.

Select Given an input stream that includes an array with any

number of dimensions, Select extracts certain indices from one

of the dimensions. Thus, it outputs an array with the same

number of dimensions, but with the dimension of interest

having a smaller size. In order to select the quantities of

interest, the component uses a header which must be passed

by the previous component in the workflow. The header is

a list of strings that name the quantities in the dimension of

interest. This allows for easy selection of quantities at runtime

when Select is launched.

Dim-Reduce Dim-Reduce is a glue component that removes

one dimension from its input array, “absorbing” it into another

dimension without modifying the total size of the data. The

other dimensions are left unchanged. This component can

work with an input array having any number of dimensions.

The output is an array with one dimension removed and

with another dimension that has been re-defined. When using

this component, the user must specify which dimension to

eliminate and which to grow.

Magnitude In our current implementation, Magnitude ex-

pects a two-dimensional array as input, where one dimension

spans the data points at each time step (particles in the case

of LAMMPS and grid points in the case of GTC) and the

other dimension spans any number of components of the

same vector, for example the three-dimensional components of

velocity in the LAMMPS workflow. Magnitude calculates the

magnitudes of the vectors from the values of their individual

components and outputs a one-dimensional array of the new

values. Which dimension is which in the input array is

specified by the user at runtime. A small number of changes

and a few start-up parameters could generalize this code to

perform any number of common operations that calculate a

quantity from many, applying a known formula over a two-

dimensional dataset, thus allowing this component to fit into

a variety of scientific workflows.

Histogram The processes that make up the Histogram com-

ponent partition among themselves a one-dimensional array of

data. They communicate to discover the global minimum and

maximum values in the array, create a number of bins between

these two extremes, and then communicate again to count the

number of values in the globally partitioned array that fall in

each bin. The number of bins to use must be passed to the

component when it is launched.

Dumper While this component was not created in time for

this paper, the value of a component specifically designed to

be the endpoint of a workflow is clear. The key goal for this

component is to offer a way to write an ADIOS stream into an

output file using some particular format. Whether to write the

workflow output as HDF5, ADIOS-BP, or a simple text file

could simply be selected by the user as an option, requiring no

modifications to existing components, and no re-compilation.

Plotter Another component that would be of value would be

one with a graph plotting capability. For example, GNU Plot

takes a simple text input description and generates a graph.

Rather than having the graphing component write to disk, it

should also push out a stream to some other consumer. An

additional Dumper that writes an image file in a particular

format would be a valuable addition.

Initial evaluation results are on the poster itself.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy’s National Nuclear Security Adminis-

tration under contract DE-AC04-94AL85000.

This work was supported by Advanced Scientific Com-

puting Research, Office of Science, U.S. Department of En-

ergy, under Contract DE-AC02-06CH11357, program manager

Lucy Nowell.

REFERENCES

[1] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White. Turbu-
lent transport reduction by zonal flows: Massively parallel simulations.
Science, 281(5384):1835–1837, September 1998.

[2] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow management and
the kepler system: Research articles. Concurr. Comput. : Pract. Exper.,
18(10):1039–1065, 2006.

[3] G. Malewicz, I. Foster, A. Rosenberg, and M. Wilde. A tool for prior-
itizing DAGMan jobs and its evaluation. High Performance Distributed
Computing, 2006 15th IEEE International Symposium on, pages 156–168,
0-0 2006.

[4] S. Plimpton, R. Pollock, and M. Stevens. Particle-mesh ewald and rrespa
for parallel molecular dynamics simulations. In Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing, PPSC
1997, March 14-17, 1997, Hyatt Regency Minneapolis on Nicollel Mall
Hotel, Minneapolis, Minnesota, USA. SIAM, 1997.

171

