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ABSTRACT
Validating experimental results in the field of storage sys-
tems is a challenging task, mainly due to the many changes
in software and hardware that computational environments
go through. Determining if an experiment is reproducible
entails two separate tasks: re-executing the experiment and
validating the results. Existing reproducibility e�orts have
focused on the former, envisioning techniques and infras-
tructures that make it easier to re-execute an experiment.
In this position paper, we focus on the latter by analyzing
the validation workflow that an experiment re-executioner
goes through. We notice that validating results is done on
the basis of experiment design and high-level goals, rather
than exact quantitative metrics. Based on this insight, we
introduce a declarative format for specifying the high-level
components of an experiment as well as describing generic,
testable conditions that serve as the basis for validation. We
present a use case in the area of distributed storage systems
to illustrate the usefulness of this approach.

1. INTRODUCTION
A key component of the scientific method is the ability

to revisit and reproduce previous experiments. Registering
detailed information about an experiment allows scientists to
understand and validate results. Reproducibility also plays a
major role in education since a student can learn by looking
at provenance information, re-evaluate the questions that
the original experiment answered and thus “stand on the
shoulder of giants”.

Given the continuously increasing role that computers
play in scientific discoveries, the issue of reproducibility in
applied computer science has recently been the focus of
considerable attention by the scientific community [1–3]. The

ACM acknowledges that this contribution was authored or co-authored by
an employee, contractor or affiliate of the United States government. As
such, the United States Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.
PDSW 2015 November 15-20, 2015, Austin, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-4008-3/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2834976.2834979 .

advent of cloud computing makes it easier to share code and
data, simplifying collaboration for implementing experiments.
While it is becoming easier to collaborate, the same cannot
be said about experiment validation. The goal of our work is
to close this gap in the area of systems research and storage
systems in particular. To complicate the things further, in
systems research, performance is the subject of study and
we need to look at it as a primary issue.

When discussing reproducibility, the terms reproducibility,
repeatability, replicability and recomputability (among many
others) are often used, sometimes interchangeably. In our
work we only employ repeatability and reproducibility. We
borrow the definitions introduced by Vitek et al. [2]:

Repeatability. The ability to re-run the exact
same experiment with the same method on the
same or similar system and obtain the same or
very similar result.
Reproducibility. The independent confirmation
of a scientific hypothesis through reproduction by
an independent researcher/lab. The reproductions
are carried out after a publication, based on the
information in the paper and possibly some other
information, such as data sets, published via sci-
entific data repositories or provided by the authors
on inquiry.

While desirable, it is impractical to assume that the exact
same experiment can be run on the same or a similar system,
thus our main focus is reproducibility. Today’s computational
environments undergo a continual stream of changes that
make it di�cult for an experiment to observe the same state
across multiple executions. Version-control systems (VCS)
are sometimes used to ease the recreation of an experimental
environment [4]. However, availability of the source code does
not guarantee reproducibility [3] since the code might not
compile and, even if compilable, the resulting program might
not generate the same results. Recreating an environment
that resembles the one where an experiment was originally
executed is a challenging task [5]. Virtualization technologies
can play a big role in accomplishing this [6,7]. In the end,
the re-implementation of an experiment has to be audited
by experts to confirm that it resembles the original.

The reproduction of an experiment can be seen as being
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composed of (1) its execution and (2) the validation of the
results. Generally, these two tasks are conflated when desig-
nating an experiment as reproducible. In our case, we treat
them separately and focus on the latter. At this validation
stage, the reviewer has to answer the question: “are the
re-generated results corroborating the original ones?” An
alternative but problematic validation criterion can rely on
the exact quantitative observations, that is, results validate
the original work if the exact same numerical values of the
original output are obtained. This leaves little leeway for
validation since more often than not an experiment will get
executed on environments that di�er from the original. Thus,
ideally, we would like to have a way of specifying validation
criteria that are as independent as possible from the particu-
lar implementation details, i.e., a way of testing the validity
of the original work that is agnostic to the implementation
of the experiment. A potential solution is to have an experi-
ment specification that describes the expected outcome in
abstract rather than absolute terms. In this position paper,
we propose to take experiment goals as the basis for valida-
tion and treat quantitative observations in the context of
these goals.

2. GOALS, MEANS, AND OBSERVATIONS
The high-level structure of an experiment can be described

as having three components: goals, means, and observations.
Two additional transient components, output data and result
visualizations, are created as part of running the experiment
and are used as a basis for observations (Figure 1).

Figure 1: High-level structure of an experiment.

Goals: An experiment is designed with a particular goal in
mind, for example, to show that under certain circumstances,
a new system or algorithm improves the state-of-the-art by
an order of magnitude.

Means: An experiment is composed of a relatively com-
plex computational environment that includes one or more
of the following: hardware, virtualization, OS, configuration,
code, data and workload. We refer to these as the means of
the experiment and use this term to denote the particular-
ities of how the experimental environment and procedures
are carried out.

Observations: As part of the experiment execution, met-
rics are collected into an output dataset. This raw data can
optionally be summarized (e.g., with statistical descriptors)
before being displayed in a figure and described in the form
of observations made in the prose of the article. The obser-
vations made about the output data properties are the basis
on which an author proves and corroborates the hypothesis

of her work.
A declarative format provides a way to express, at a high-

level, the rationale behind the experiment design, its means
of execution, and the expected observations that validate the
author’s claims.

3. EXPERIMENT SPECIFICATION FORMAT
An experiment specification format (ESF) allows a scientist

to explicitly and declaratively capture an experiment’s high-
level structure. An example JSON file is shown below. It
corresponds to a simplified version of the specification of
a published experiment (see Section 4). We describe each
section of the ESF next.

1 {

2 "goal_location": { "sec": "6.1", "par": 5 },

3 "goal_text": "demonstrate that Ceph scales linearly

4 with the size of the cluster",

5 "goal_category": ["proof_of_concept"],

6 "experiments":[ {

7 "reference":"figure-8",

8 "name":"scalability experiment",

9 "tags":["throughput"],

10 "hardware_dependencies": [{

11 "type": "hdd",

12 "bw": "58MB/s"

13 },{

14 "type": "network",

15 "bw": "1GbE"

16 }],

17 "software_dependencies": [{

18 "type": "os",

19 "kernel": "linux 2.6.32",

20 "distro": "debian 6.0"

21 },{

22 "type": "storage",

23 "name": "ceph",

24 "version": "0.1.67"

25 }],

26 "workload": {

27 "type": "rados-benchmark",

28 "configuration": [

29 "object-size": "4mb", "time": "120s",

30 "threads": "16", "mode": "write"

31 ]},

32 "independent_variables": [{

33 "type": "method",

34 "values": ["raw", "ceph"],

35 "desc": "raw corresponds to hdd sequential write

36 performance, expressed in MB/s"

37 },{

38 "type": "size",

39 "values": ["2-24", 2]

40 }],

41 "dependent_variable": {

42 "type": "throughput",

43 "scale": "mb/s"

44 },

45 "statistical_functions": {

46 "functions": ["avg", "stddev"],

47 "repetitions": 10

48 },

49 "validations": [

50 "for size=*

51 expect ceph >= (raw * 0.9)"

52 ]}]}

3.1 Experiment Goals
The first elements in the ESF specify the experimental

goal (lines 2-8) and link it with one or more experiments
that appear in the article that serve to accomplish the goal.

3.2 Means of an Experiment
While computational systems are complex, advances in

version-control and cloud computing technologies reduce the
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burden of recreating the environment on which an experiment
runs. Immutability makes it easier to fix a large majority
of the components of an experiment as well as infer and
package its dependencies [8]. For those components that
cannot be fixed to a particular state, tools can automatically
obtain and format detailed information about the state of
the execution platform, making it easier to compare between
original and re-execution environments. The challenge lies
in finding, when present, the root cause(s) of the di�erences
in original and reproduced results [9].

The ESF contains a section to specify the means of the
experiment. In the example, this corresponds to lines 13-36.
This is a simplified list of dependencies for this experiment,
used only to illustrate the type of information that is captured
in this section. A real example would be more comprehensive,
potentially relying on tools that obtain this information
automatically.1

3.3 Schema of Raw Data
While it is important to capture the output data, making

it part of the ESF would be cumbersome and, as has been
mentioned, exact numerical repeatability is a very limited
validation criterion. Instead, it is preferable to have a de-
scription of the metrics being captured, i.e., the metadata of
the experiment’s output. For example, if the measurements
are stored in a CSV file, the experiment specification should
include the metadata of each column such as name, aliases,
types, scales and ranges.

The ESF has two entries for independent and dependent
variables that are used to specify the schema of the output
data (lines 37-49). The latter refers to the metric being
captured while the former corresponds to the values over
which the measurements are taken. Additionally, if statistical
functions are applied to the raw data, these should also be
specified (lines 50-53), along with the number of experiment
repetitions and summarization techniques used, if any.

3.4 Observations and Validation Clauses
We propose using a declarative language for codifying

observations. Such a language provides an author with a
mechanism to succinctly write descriptive statements that
can be used to test for reproducibility. The simplified syntax
for the language is the following:

validation

: �for� condition (�and� condition)*

�expect� result (�and� result)*

;

condition

: vars (�in� range) | vars (�=�|�<�|�>�|�!=�) value

;

result : condition ;

range

: �between� value �and� value | �[�value(�,�value)*�]�

;

value

: �*� | NUMBER | STRING �*� NUMBER

;

vars : STRING (�,� STRING)* ;

The statements constructed via this language refer to ele-
ments on the schema of the output data. In other words, the
schema specification that precedes the validations section
of the ESF introduces syntactic elements into the language
that provide an easy way to write validation statements. For
1https://github.com/sosreport/sos

example, suppose there is an experiment that evaluates con-
currency control methods and the experiment measures their
performance while varying the number of worker threads.
The schema for such an experiment might be the following:

{

"independent_variables": [ {

"type": "method",

"values": ["baseline", "mine"]

}, {

"type": "threads",

"values": ["2", "4", "8", "16"]

}],

"dependent_variable": {

"type": "throughput",

"scale": "ops"

}

}

A statement for this experiment might be:

for threads > 4

expect mine = (10 * baseline)

In prose form, the above describes that when the number of
worker threads goes beyond 4, mine outperforms baseline by
an order of magnitude. When re-executing this experiment,
the data should reflect this behavior in order to validate the
results.

4. CASE STUDY
We illustrate our approach by taking a published paper

and describing the goals, means, and observations, including
the validation clauses, that define the reproducibility criteria
for one of the experiments contained in it. We take the Ceph
OSDI ’06 paper [10] and reproduce the scalability experiment
from the data performance section (6.1 on the original paper).
Results of the scalability experiment are presented in Section
6.1.3 of the Ceph paper (reprinted in Figure 2). The goal
of this experiment is to show that Ceph scales linearly with
the number of storage nodes, assuming the network switch
is never saturated. This linear scalability is the validation
criteria for this experiment and thus what we would like to
capture in the specification.

Table 1: Components of original and reproduced
environments of the scalability experiment.

Component Original Reproduced

CPU AMD 2212 @2.0GHz Intel E5-2630 @2.3GHz
Disk drive Seagate ST3250620NS HP 6G 658071-B21
Disk BW 58 MB/s 120 MB/s (15 MB/s limit)

Linux 2.6.9 3.13.0
Ceph commit from 2005 0.87.1

Storage 26 nodes 12 nodes
Clients 20 nodes 1 node

Network Netgear GS748T Same as original
Network BW 1400 MB/s 110 MB/s

We present the original environment in Table 1 (Original
column).2 The original scalability experiment ran with 20
clients per node on 20 nodes (400 clients total) and varied
the number of object storage devices (OSDs) from 2-26 in
increments of 2. Every node was connected via a 1 GbE link
2The complete platform specs, as well as the means (software
and workloads) and results of the reproduced experiments
are available at https://github.com/ivotron/pdsw15.
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yielding a theoretical upper bound of 2GB/s when there was
enough capacity of the OSD cluster to have 20 1Gb connec-
tions or alternatively when the connection limit of the switch
was reached. The paper experiments were executed on a
Netgear switch. This device has a capacity of approximately
14 GbE in real total tra�c (from a 20 advertised), corre-
sponding to the 24 * 58 = 1400 MB/s combined throughput
shown in the original paper (the breaking point in Figure 2).

Figure 2: Reprinting Figure 8 from the original pa-
per [10]. The original caption reads: “object storage
device (OSD) write performance scales linearly with
the size of the OSD cluster until the switch is sat-
urated at 24 OSDs. CRUSH and hash performance
improves when more PGs lower variance in OSD uti-
lization.” The experiment sequentially writes 4 MB
objects to minimize random I/O. Our main focus is
on the red solid line with circle markers. The point
where linear scalability breaks is encircled in black.

The (simplified) specification shown earlier (Section 3)
corresponds to this experiment. Without considering bottle-
necks, a reasonable validation statement should specify that
the performance of Ceph is within 90% of the raw hard-disk
bandwidth, which is what the validation clause in lines 54-57
of the example specifies. In practice, the linear scalability be-
havior is ultimately limited by the capacity of the underlying
network. We would like to express this bottleneck as part
of the specification. We can accomplish this by introducing
a new clause, for example for size > 24 expect ceph <
(raw * 0.5), which specifies that when the size of the clus-
ter exceeds 24, the performance degrades to less than 50% of
the raw hard disk bandwidth. However, the network switch
capacity is a function of the environment and may ultimately
a�ect the experiment results. An alternative is to extend
the grammar to incorporate subclauses that qualify simple
validation statements. Using these, the complete clause for
this experiment would be:

for size=*

expect ceph >= (raw * 0.9)

when not network_saturated

The boolean value for network_saturated should come
from network metrics that are captured at runtime. For
example, some switches implement the SNMP protocol that
allows to identify if the network is getting saturated.

To evaluate the feasibility of this particular validation, we
recreated the original environment using the means specified
in the Reproduced column of Table 1. Due to constraints in
hardware resources, we had to scale down the experiment by
reducing the number of client nodes to 1 running 16 client

threads and 12 storage nodes. This means that our network
upper bound is approximately 110 MB/s (the new network
bottleneck), corresponding to the capacity of the 1GbE link
from the client to the switch. We throttled I/O to 15 MB/s
for each storage node.3 We used this per-OSD increment as
our scaling unit. Figure 3 shows results of this scaled-down,
throttled re-execution of the scalability experiment.

Figure 3: Reproducing a scaled-down version of the
original OSDI ’06 scalability experiment. The x-axis
corresponds to the size of the cluster (in number of
OSDs). The y-axis represents normalized through-
put (to meaningfully compare against original re-
sults) with respect to the raw performance of the
hard disk drives in the cluster. The red line corre-
sponds to the original results and the green line to
the one generated by the re-execution of the exper-
iment. The point where linear scalability breaks is
encircled in black.

Our experiment corroborates that Ceph scales linearly with
the number of OSDs until it saturates the available network
capacity (1GbE link of the client at 8 OSDs). As can be
noted, this is where the declarative specification stands out
since the validation is independent of the particularities of
the means of each experiment. Even though the recreated
environment is significantly di�erent from the original, we
are able to reproduce the results by validating on the basis
of the experiment goal, schema of the output and validation
clauses expressed as relative rather than absolute throughput
measurements.

5. DISCUSSION

5.1 Usability
Given that the high-level components (Section 2) abstract

a large number of experiments that people usually implement
in the storage systems literature and since this is what a
researcher usually goes through anyway, creating the specifi-
cation for an experiment represents little extra e�ort. The
exception being documenting the experiment means which,
as we mentioned before (Section 3.2), is a task that can be
automated using currently available tools.

5.2 Integration into Existing Infrastructure
The ESF can in principle be produced or consumed by

existing tools in order to automate the validation process.
3We throttle I/O with the purpose of slowing down the exper-
iment. The hard drives used for the reproduced experiment
can perform at 120 MB/s which would saturate the network
link rapidly.
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For example, experimental platforms such as CloudLab [11]
can incorporate the notion of execution so that for every
experiment a record of executions is maintained. For each
execution, the means section of the ESF can be automatically
populated. Validation statements can also provide another
testability layer for continuous integration (CI) systems such
as Jenkins, where not only the correctness of a system is
checked (via unit/integration tests) but also the performance
is tested against changes made to the codebase.

5.3 Codified Observations Express Falsifiable
Statements

Validation clauses serve to succinctly codify observations.
Given the descriptive language design, validation ranges have
to be provided for each observation so that it can be tested.
This has the implication of turning observations into falsifi-
able statements [12]. These validation clauses are conditions
that should hold in order to corroborate the conclusions of
the paper. Experiment goals (Section 3.1) set the tone in
which these falsifiable statements are treated. For an exper-
iment that proves a concept or design, a validation clause
has more weight than, say, an experiment that quantifies an
expected overhead. Goals set the mindset of the reader or
reviewer that validates the work whenever she encounters
failed validations. This is the main motivation for having
goals as an explicit entry on the ESF.

5.4 The Validation Workflow
The ESF has the structure of a conditional statement:

given the goals and means of an experiment, the observa-
tions on the output data should hold. Thus, if the validation
statements are false with respect to the output data of the
re-execution of an experiment, it is either because the dif-
ferences between the means of the original and reproduced
experiment are significantly di�erent, or the original claims
cannot be corroborated. Thus, before one can determine the
latter, one has to audit the di�erences between the means of
experimentation and account for all of them (Figure 4).

Figure 4: Validation workflow.

5.5 Early Feedback
The following are quotes from authors that have kindly

worked with us by creating specifications for one or more of
their published experiments:

Author 1: Writing an experiment specification
makes you think clearly about the overall experi-
ment design.

Author 2: The ESF provides a nice template for
carrying out experiments.

Author 3: This approach helps to find meaning-
ful baselines. Reporting raw numbers in figures
and observations makes it harder to validate re-
sults. Specifying validation clauses respective to
baselines and normalized values makes it easier
to report reproducible results.

In general, we have noticed that the exercise of explic-
itly specifying the validation criteria creates a feedback loop
in an author’s mind that results in insightful ideas for ex-
periment design, baseline selection, and validation criteria.
Additionally, the author’s point of view is explicitly expressed.
Usually, figures contain more information than necessary to
back a claim. This might lead readers to draw other conclu-
sions. Lastly, every article has an implicit temporal context
associated to it that the reader has to keep in mind, for exam-
ple, the bottleneck at the time that an article was published
might be in storage (e.g., hard disk drives) while at other
times they might have moved to the network instead (e.g.,
because of the availability of faster storage such as SSDs).
A possibility would be to create a community-maintained
knowledge base that an author can link the paper to so that
a semantic context is available to the reader.

6. RELATED WORK
The challenging task of evaluating experimental results in

applied computer science has been long recognized [13,14].
This and other related issues have gained substantial atten-
tion lately in systems research [2,3,15–20], computational
science [1,17,18,21] and science in general [22–24]. Similarly,
e�orts such as The Recomputation Manifesto [25] and the
Software Sustainability Institute [26] have reproducibility as
a central part of their endeavour but leave performance as a
secondary problem. In systems research, performance is the
subject of study, thus we need to look at it as a primary issue.
The use of declarative specifications has been explored in the
context of cloud recovery testing [27], bug reproduction [28]
and cloud resource orchestration [29].

7. CONCLUSION AND FUTURE WORK
In the words of Karl Popper: “the criterion of the scien-

tific status of a theory is its falsifiability, or refutability, or
testability”. By providing a way to specify the high-level com-
ponents of an experiment and validation clauses for observed
metrics we e�ectively incorporate falsifiability to the field
of experimental storage systems. We are in the process of
studying the viability of the ESF on experiments from other
areas of systems research. While we envision our findings
to be applicable in the area of systems research, we plan to
evaluate its suitability on other areas of computer science.
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