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Abstract—Evaluating experimental results in the field of com-
puter systems is a challenging task, mainly due to the many
changes in software and hardware that computational environ-
ments go through. In this position paper, we analyze salient
features of container technology that, if leveraged correctly, can
help reduce the complexity of reproducing experiments in systems
research. We present a use case in the area of distributed storage
systems to illustrate the extensions that we envision, mainly in
terms of container management infrastructure. We also discuss
the benefits and limitations of using containers as a way of
reproducing research in other areas of experimental systems
research.

I. INTRODUCTION

A key component of the scientific method is the ability
to revisit and replicate previous experiments. Registering
information about an experiment allows scientists to interpret
and understand results, as well as verify that the experiment was
performed according to acceptable procedures. Additionally,
reproducibility plays a major role in education since the
amount of information that a student has to digest increases
as the pace of scientific discovery accelerates. By having the
ability to repeat experiments, a student can learn by looking
at provenance information, re-evaluate the questions that the
original experiment answered and thus “stand on the shoulder
of giants”.

In applied computer science an experiment is carried out in
its entirety on a computer. Repeating an experiment doesn’t
require a scientist to rewrite a program, rather it entails
obtaining the original program and executing it (possibly in a
distinct environment). Thus, in principle, a well documented
experiment should be repeatable automatically (e.g. by typing
make); however, this is not the case. Today’s computational
environments are complex and accounting for all possible
effects of changes within and across systems is a challenging
task [1,2].

Version-control systems (VCS) are sometimes used to address
some of these problems. By having a particular version ID
for the software used for an article’s experimental results,
reviewers and readers can have access to the same code base
[3]. However, availability of the source code does not guarantee

reproducibility [4] since the code might not compile and, even if
compilable, the results might differ. In that case, the differences
have to be analyzed in order to corroborate the validity of the
original experiment.

Additionally, reproducing experimental results when the un-
derlying hardware environment changes is challenging mainly
due to the inability to predict the effects of such changes in
the outcome of an experiment. A Virtual Machine (VM) can
be used to partially address this issue but the overheads in
terms of performance (the hypervisor “tax”) and management
(creating, storing and transferring) can be high and, in some
fields of computer science such as systems research, cannot
be accounted for easily [5].

OS-level virtualization [6] is a server virtualization method
where the kernel of an operating system allows for multiple
isolated user space instances, instead of just one. Such instances
(often called containers, virtualization engines (VE), virtual
private servers (VPS), or jails) may look and feel like a real
server from the point of view of its owners and users. In
addition to isolation mechanisms, the kernel often provides
resource management features to limit the impact of one con-
tainer’s activities on the other containers. Container technology
is currently employed as a way of reducing the complexity of
software deployment and portability of applications in cloud
computing infrastructure. Arguably, containers have taken the
role that package management tools had in the past, where
they were used to control upgrades and keep track of change
in the dependencies of an application [7].

In this work, we make the case for containers as a way of
tackling some of the reproducibility problems in computer
systems research. Specifically, we propose to use the resource
accounting and limiting components of OS-level virtualization
as a basis for creating execution profiles of experiments that
can be associated with results, so that these can subsequently be
analyzed when an experiment is evaluated. In order to reduce
the problem space, we focus on local and distributed storage
systems in various forms (e.g., local file systems, distributed
file systems, key-value stores, and related data-storage engines)
since this is one of the most important areas underlying cloud
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computing and big-data processing, as well as our area of
expertise.

The rest of this paper is organized as follows. We first describe
the distinct levels of reproducibility that can be associated
with scientific claims in systems research and give concrete
examples in the area of storage systems (section II). We
then analyze salient features of container technology that are
relevant in the evaluation of experiments and introduce what
in our view is missing in order to make containers a useful
reproducibility tool for storage systems research (section III).
We subsequently present a use case that illustrates the benefits
of the proposed container management extensions that we
envision (section IV). We then follow with a discussion about
the benefits and limitations of using containers in other areas of
experimental systems research (section V). We finally discuss
related work (section VI) and conclude (section VII).

II. EVALUATION OF EXPERIMENTAL SYSTEMS RESEARCH

An experiment in systems research is composed of a triplet of
(1) workload, (2) a specific system where the workload runs
and (3) results from a particular execution. Respective to this
order is the complexity associated with the evaluation of an
experiment: obtaining the exact same results is more difficult
than just getting access to the original workload. Thus, we
can define a taxonomy to characterize the reproducibility of
experiments:

1. Workload Reproducibility. We have access to the original
code and the particular workload that was used to obtain
the original experimental results.

2. System Reproducibility. We have access to hardware and
software resources that resemble the original dependen-
cies.

3. Results Reproducibility. The results of the re-execution
of an experiment are valid with respect to the original.

In storage systems research, workload reproducibility is
achieved by getting access to the configuration of the bench-
marking tool that defines the I/O patterns of the experiment.
For example, if an experiment uses the Flexible I/O Tester1

(FIO), then the workload is defined by the FIO input file.

System reproducibility can be divided into software and
hardware. The former corresponds to the entire software
stack from the firmware/kernel up to the libraries used by an
experiment. The latter comprises the set of hardware devices
involved in the experiment such as the specific CPU model,
storage drives or network cards on which the experiment ran.

Reproducing results does not necessarily imply the regeneration
of the exact same measurements; instead it entails validating
the results by checking how close (in shape or trends) to
the original experiment they are. Given this, evaluating an
experiment can be a subjective task. If our aim is to elevate

1https://github.com/axboe/fio

our discipline to the same rank of other experimental sciences,
evaluation of results should never be subjective. In systems
research, result reproducibility depends on the particular goals
of the experiment; within the domain of storage systems, we
propose to evaluate results based on resource utilization metrics,
specifically memory, CPU, and I/O bandwidth, to provide
objective standards for unambiguously comparing results.

III. CONTAINERS FOR REPRODUCIBLE SYSTEMS
RESEARCH

Current implementations of OS-level virtualization (e.g. LXC2

or OpenVZ3) include an accounting component that keeps
track of the resource utilization of a container over time. In
general, this module can account for CPU, memory, network
and I/O usage. By periodically checking and recording these
metrics while an experiment runs, we can obtain a profile of its
execution. This profile is the signature of the experiment on the
particular hardware on which it executed. The challenge is to
recreate results on distinct hardware. By coupling this execution
profile to a profile of the underlying hardware, we can provide
valuable information for researchers to use while evaluating
a particular result. In concrete, when trying to reproduce an
experiment on a system B that originally ran on A, we propose
the following mapping methodology:

1. Obtain the hardware profile of A.
2. Obtain the configuration of every container involved in

the experiment, along with their execution profile.
3. Obtain the hardware profile of B.
4. Generate a configuration for the experiment w.r.t. B by

recreating the resource allocation that the experiment had
when it ran on A.

Using LXC as an example, we show in Figure 1 a monitoring
daemon running as a userspace process in the host that
implements the process described above.

Fig. 1. A userpace process running alongside the container execution engine
(LXC) that periodically probes the statistics of containers in order to obtain
an execution profile.

The hardware profile is composed of static (e.g. the hardware
characteristics as seen by lshw) and dynamic information

2https://www.kernel.org/doc/Documentation/cgroups
3https://wiki.openvz.org/Proc/user_beancounters
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(e.g. the results of micro-benchmarks that characterize the bare-
metal performance of a machine). The container configuration
corresponds to the host’s resources available to a container,
such as number of CPUs and total amount of memory. While
the experiment runs, performance metrics for the container can
be obtained in order to create an execution profile.

The monitoring process periodically dumps the content of the
cgroups pseudo-filesystem in order to capture the runtime
metrics of containers running in the system. An alternative
for structuring this information is by defining the following
schema:

(IMG|EX_ID|HW_PROFILE|CGROUPS|EX_PROFILE)

Where IMG points to the image from where the container was
instantiated. EXE_ID corresponds to a particular execution of
the experiment with associated timestamps. HW_PROFILE,
as mentioned above, captures the bare-metal performance
of the machine where the container executes. CGROUPS is
the configuration in terms of control groups for the distinct
subsystems (CPU, memory, network and I/O). EX_PROFILE
is the profile for a particular execution; i.e. there is one profile
for every entry (one for each EX_ID).

The profile database can be located remotely in a central
repository that serves as the hub for managing experiments
in a distributed environment. For example, this monitoring
component could be implemented as a submodule of CloudLab
[8]. For experiments consisting of multiple hosts and container
images, orchestration tools such as Mesos [9] can also be
extended to incorporate this profiling functionality. One of main
goals of our work is to determine whether this information is
sufficient to evaluate a result.

IV. USE CASE: SCALABILITY EXPERIMENTS OF CEPH
OSDI ’06

To illustrate the utility of having execution and hardware
profiles, we take the Ceph OSDI ’06 paper [10] and reproduce
one of its experiments. In particular, we look at the scalability
experiment from the data performance section (6.1). The reason
for selecting this paper is that we are familiar with these
experiments. This makes it easier to reason about contextual
information not necessarily available directly from the paper.

The experiments in Section 6.1 of the original paper showed
the ability of Ceph to saturate disk evenly among the drives
of the cluster. Figures 5-7 from the original paper showed
per-OSD performance as the object size varied from 4 KB to
4 MB. Results of the scalability experiment are presented in
Section 6.1.3 of the Ceph paper (Figure 8 on the original paper;
reprinted below in Figure 2). The goal of this experiment is
to show that Ceph scales linearly with the number of storage
nodes, up to the point where the network switch is saturated.
This linear scalability is our reproducibility evaluation criteria
for this specific experiment.

Fig. 2. Reprinting Figure 8 from the original paper. The original caption reads:
“OSD write performance scales linearly with the size of the OSD cluster until
the switch is saturated at 24 OSDs. CRUSH and hash performance improves
when more PGs lower variance in OSD utilization.”

The experiment used 4 MB objects to minimize random I/O
noise from the hard drives. We ignore the performance of the
hash data distribution and increase the number of placement
groups to 128 per node, thus we meaningfully compare against
the red solid-dotted line in Figure 8 of the Ceph paper.

A. Reproducing Results on Similar Hardware

A subset of the hardware used for the Ceph experiments is still
available in our laboratory. Each node in the system consist
of a 2-core 2212 AMD Opteron @2.0GHz, 8GB of RAM,
1GbE NIC and 250GB Seagate Barracuda ES hard drives. We
created a containerized version of the experiment using the
0.87 branch of Ceph. We use docker 1.3.3 and LXC 1.0.6
running on Ubuntu 12.04 hosts (3.13.0-43 x86_64 kernel).

The original scalability experiment ran with 20 clients per node
on 20 nodes (400 clients total) and varied the number of OSDs
from 2-26 in increments of 2. Every node was connected
via 1 GbE link, so the experiment theoretical upper bound
was 2GB/s (when there was enough capacity of the OSD
cluster to have 20 1Gb connections) or alternatively when
the connection limit of the switch was reached. The paper
experiments were executed on a Netgear switch. This device
has a capacity of approximately 14 GbE in real total traffic
(from a 20 advertised), corresponding to the 24 * 58 = 1400
MB/s combined throughput shown in the original paper.

We scaled down the experiment by reducing the number of
client nodes to 1 (running 16 client threads). This means
that our network upper bound is approximately 110 MB/s
(the capacity of the 1GbE link from the client to the switch).
We throttle I/O at 30 MB/s, so this is our scaling unit (the
per-OSD increment). The reason for throttling at 30 MB/s
is that, over time, the Seagate disks have aged (they are 10
years old!) and overall performance among the hard drives
of our cluster is different from the ~58 MB/s observed in
the original paper. In order to amortize, we had to take the
lowest common denominator which in this case is 30 MB/s.
We throttle I/O by configuring LXC containers with the control
group blkio.throttle.write_bps_device directive.
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Figure 3 shows results of this scaled-down, throttled version of
the scalability experiment. An open question is to determine
if the process of scaling-down and throttling resources can
be automated, given the profile repository described in the
previous section.

Fig. 3. Reproducing a scaled-down version of the original OSDI ’06 scalability
experiment. The y-axis represents average throughput, as seen by the client.
They x-axis corresponds to the size of the cluster (in number of object storage
devices (OSD). The square marker corresponds to the average of 10 executions.
The line with triangle markers projects the original results to our setting. This
projection is obtained by having the 58 MB/s divided by 2 (to reflect the
doubled I/O operation of the current Ceph version), i.e. 24 MB/s as the
scalability unit of the original experiment.

We see that Ceph scales linearly with the number of OSDs, up
to the point where we saturate the 1GbE link4. We note that
we don’t see 30 MB/s of net I/O utilization since the current
version of Ceph issues two I/O calls on each write request, one
to the write-ahead log and another one to the data backend.
The original experiments used a prototype version of Ceph
that didn’t include this atomicity/durability feature. Figure 3
also shows a projection of the original data to our setting. The
original result shows better scalability behavior due to newer
and more stable hard drives.

B. Reproducing Results on Different Hardware

So far we have discussed how to reproduce an experiment on
the original hardware. But, as we have mentioned before, the
challenge is in reproducing experiments on different hardware.
Having the experiment implemented in containers allows us
to swap components of the underlying hardware and repeat
the experiment easily; after all, this is one of the ultimate
goals of virtualization, and containers aim at doing it with
minimal overhead. Our interest is in measuring the effects that
replacing distinct components has on experimental results. Our
conjecture is that, for many cases, the mapping methodology
defined in the previous section will allow to reproduce results

4The experiment scales linearly up to 4 nodes. At OSD number 5, the 1
GbE link begins to exhibit the effects of network pressure. We empirically
corroborated this by re-executing the experiment with two client nodes, in
which case the experiment scales linearly up to 8 OSD nodes; at OSD number
9, the two links begin to be pressured (approximately 140 MB/s). This data is
available at the repository associated to this paper (see Section V.C).

on distinct hardware. As part of our efforts, we are working in
characterizing the cases for which our methodology will work
and those for which it won’t.

Thus, one of our initial goals is to empirically test the
repercussions of replacing storage, CPU, memory and network
devices (among others). We now present preliminary results
on the outcome of swapping distinct storage drives. We re-
executed the scalability experiment, swapping four old hard
drives with newer models. The results are shown in Figure 4.

Fig. 4. Showing the effect of replacing 4 hard drives with newer models. Old
hard drives are the same used in the previous figure and correspond to a set of
10 year old 250GB Seagate Barracuda ES (ST3250620NS). New hard drives
correspond to 500GB Western Digital Re (WD5003ABYZ) drives. Every data
point corresponds to the average (and standard error) of 10 executions.

The newer hard drives have the capacity to write at ~130 MB/s
but we throttle I/O in order to replicate the behavior of our older
drives. Standard error markers show that differences for two of
the data points are statistically significant. Our expectation was
to find complete overlapping points, since at this scalability
levels (1-4), variance is relatively low. Additionally, the blkio
cgroups subsystem has been empirically shown to effectively
isolate I/O operations at low loads [11].

After investigating further about the reason of these differences,
we found the following. As mentioned earlier, Ceph issues two
I/O calls on each write request, one of them being asynchronous.
The cgroups blkio controller responsible for limiting I/O on
block devices (which we configure to 30 MB/s) cannot throttle
asynchronous I/O operations since this type of requests go to a
queue that is shared at the system level by all containers running
in the host. We experientially corroborated this by executing a
microbenchmark using FIO that executed the same load (4MB
files) on the two hard drives in question, but using direct I/O
exclusively. In this case, the performance corresponds to the
throttled 30 MB/s (lines perfectly overlap). We then executed
a mixed workload of both direct and async I/O requests and
observed that the newer hard drive performs better than the
old one, with similar results as those showed in Figure 4.

V. DISCUSSION

We discuss other benefits and limitations of containerization,
as well as general reproducibility guidelines when working
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with containers.

A. Cataloging Experiments

By storing performance profiles of experiments and associated
hardware, we can create categories of container metrics that
describe in a high-level what the experiment’s goal is, for
example:

• In-memory only
• Storage intensive
• Network intensive
• CPU intensive
• 50% of caching effects

Assuming there is a central repository of experiments associated
with infrastructures such as CloudLab [8]. A scientist wanting
to test new ideas in systems research can look for experiments
in this database by issuing queries with a particular category
in mind.

B. Can All Systems Research Be Containerized?

Based on previous performance evaluations of container
technology, in particular LXC [12–15], we can extrapolate
the following conditions for which experimental results will
likely be affected by the implementation of the underlying
OS-level virtualization:

• Memory bandwidth is of extreme importance (i.e. if 5% of
performance will affect results). Some experiments show
a significant overhead of the memory subsystem while
handling the limits imposed to containers.

• External storage drives can’t be used, thus having the
experiment perform I/O operations within the filesystem
namespace where the container is located. For example,
AUFS has been shown to incur a penalty when processes
write to the container’s filesystem.

• Network address translation (NAT) is required.
• Distinct experiments consolidated on the same host. Even

though many containers can be co-located in the same
host, isolating and accounting can affect the performance
of the server host. This can be minimized by placing as
few containers as possible on the same host.

• Kernel version can’t be pinned to a particular version.
Since the OS is the hypervisor, distinct kernel versions
observe distinct performance characteristics.

Any experiment for which any of the above applies should be
carefully examined since the effects of containerization can
affect the results. The design of the experiment should explicitly
account for these effects. This list is not comprehensive, of
course, and an open problem is to delineate precisely the
boundaries between experiments well-suited to be reproducible
via containers vs. those that are not.

C. Other Lessons Learned So Far

We list some of the lessons that we have learned as part of
our experience in implementing experiments in containers:

• Version-control the experiment’s code and its dependen-
cies, leveraging git subtrees/submodules (or alike) to keep
track of inter-dependencies between projects. For example,
if a git repository contains the definition of a Dockerfile,
make it a submodule of the main project.

• Refer to the specific version ID that a paper’s results were
obtained from. Git’s tagging feature can also be used to
point to the version that contains the codebase for an
experiment (e.g. “osdi_14”).

• When possible, add experimental results as part of the
commit that contains the codebase of an experiment. In
other words, try to make the experiment as self-contained
as possible, so that checking out that particular version
contains all the dependencies and generated data.

• Keep a downloadable container image for the version of
the experiment codebase (e.g. use the docker registry and
its automated build feature).

• Whenever possible, use continuous integration (CI) tech-
nologies to ensure that changes to the codebase don’t
disrupt the reproducibility of the experiment.

• Obtain a profile of the hardware used (eg. making use
of tools such as SoSReport5), as well as the resource
configuration of every container and publish these as part
of the experimental results (i.e. add it to the commit that
a paper’s results are based on).

We followed this guidelines for this paper. All the resources
needed to generate its content can be found in our github
account6.

VI. RELATED WORK

The challenging task of evaluating experimental results in
applied computer science has been long recognized [16–18].
This issue has recently received a significant amount of
attention from the computational research community [1,19–
21], where the focus is more on numerical reproducibility rather
than performance evaluation. Similarly, efforts such as The
Recomputation Manifesto [22] and the Software Sustainability
Institute [23] have reproducibility as a central part of their
endeavour but leave runtime performance as a secondary
problem. In systems research, runtime performance is the
subject of study, thus we need to look at it as a primary
issue. By obtaining profiles of executions and making them
part of the results, we allow researchers to validate experiments
with performance in mind.

In [4] the authors took 613 articles published in 13 top-tier
systems research conferences and found that 25% of the articles

5https://www.github.com/sosreport/sos
6https://github.com/ivotron/woc_2015#camera-ready
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are reproducible (under their reproducibility criteria). The
authors did not analyze performance. In our case, we are
interested not only in being able to rebuild binaries and run
them but also in evaluating the performance characteristics of
the results.

Containers, and specifically docker, have been the subject of
recent efforts that try to alleviate some of the reproducibility
problems in data science [24]. Existing tools such as Reprozip
[25] package an experiment in a container without having to
initially implement it in one (i.e. automates the creation of a
container from an “non-containerized” environment). Our work
is complementary in the sense that we look at the conditions in
which the experiment can be validated in terms of performance
behavior if it runs within a container.

VII. CONCLUSION

In this paper we have presented our proposal for complementing
container management infrastructure to capture execution pro-
files with the purpose of making these available to experimental
research reviewers and readers. We illustrated the benefits of
our hardware and container execution profiling methodology
by reproducing a previously published experiment in the area
of distributed storage systems. We are currently in the process
of further testing these ideas on experiments from other areas
of systems research such as kernel development and network
systems.
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