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Abstract—As scientific simulation applications evolve on the
path towards exascale, a new model of scientific inquiry is
required where concurrently with the running simulation,
online analytics operate on the data it produces. By avoid-
ing offline data storage except when absoluately necessary,
it enables speeding up the scientific discovery process by
providing rapid insights into the simulated science phenomena
and affording more frequent, detailed data analytics than is
possible with the traditional purely offline approach of using
disk for intermediate data storage. However, a challenge for
online analytics is to respond to behavior dynamics caused by
changing simulation outputs and by unforeseen events on the
underlying hardware/software platforms.

This paper presents SODA, a set of run-time abstractions for
online orchestration of data analytics, realized by embedding
analytics tasks into workstations that monitor component
behavior and enable responses to run-time changes in their
resource demands and in the platform’s resource availability.

For high end simulations running on a leadership class
machine, experimental evaluations show SODA can invoke
efficient orchestration operations responding to a diverse set of
run-time dynamics at different granularities to meet end-user
and analysis specific requirements.

Keywords-Data Staging, Data Analytics, in-Situ, Visualiza-
tion, Scalable I/O, Runtime Management, resource sharing

I. INTRODUCTION

On current generation petascale platforms, scientific ap-

plications like the GTC [1] fusion and S3D [2] combus-

tion simulations are already generating terabytes of data

every few minutes. Scaling the analytics and visualization

codes for such data volumes at these output frequencies

has required researchers to devise new online methods to

avoid overwhelming the parallel file systems attached to

these machines. While new memory hierarchy layers such

as non-volatile memory in the compute area help address

the I/O bandwidth mismatch, it only shifts the problem

to a higher performing, but much more limited resource

rather than addressing it. Instead, different methods must be

enabled. These include running analytics concurrently along

side simulations – “in-situ” [3], [4] – and in I/O staging

areas – “in-transit” [5], [6] – on the high end machine and/or

extending to auxiliary analytics clusters.

Beyond addressing performance challenges, online ana-

lytics offer science users new functionality for better under-

standing the scientific simulations being run. This includes

(1) continuously ascertaining simulation validity permitting

termination or correction without unduly wasting machine

resources [7], (2) gaining rapid insights into the scientific

processes being simulated (online visualization), or even

(3) enabling methods for application steering. Projections

suggest accommodating all of these features will lead high-

end codes to be structured as a set of concurrently run-

ning components continuously processing the simulation

data rather than as a single, large, synchronous application

integrating through the file system. This combination of

analytics components deployed into the simulation’s I/O path

is termed an I/O pipeline.

In contrast to the long-running and often well-tuned

simulations, analytics codes present considerable variations

in I/O pipelines. They differ in features such as their

maturity, degrees of parallelism, execution models, data

characteristics, and resilience capabilities. They can also

exhibit dynamic execution behavior driven by the data itself.

For example, an analytics code’s runtime may be determined

by the number of features found in the data it analyzes.

I/O pipelines, therefore, may dynamically change resource

consumption and requirements making their current resource

allocations inappropriate and/or require adjusting how ana-

lytics operate to avoid over-provisioning for the maximum

resource requirement case. Failure to react to changes in I/O

pipeline behavior can lead to severe consequences. Unduly

slow analytics pipelines can cause data loss or stall high

end simulations by causing them to block on their output

actions [5], [8], [9], [10].

This paper describes the SODA approach to managing

dynamic I/O and analytics pipelines on high end machines

(Fig. 1). SODA permits developers to embed analytics tasks

into a componentized, dynamically managed execution and

messaging framework, called a workstation. Such worksta-

tions have well defined inputs and outputs [11], can be

parallel (MPI or threads), and may exhibit inter-workstation

dependencies. Entire I/O pipelines can be constructed by

chaining workstations along their I/O paths.

SODA offers controlled resource usage, per-component

orchestration, and metric-driven operation. Controlled re-

source usage means workstations provide and manage re-

sources for the component mapped to it. Per-component

orchestration means that a workstation can offer customized

orchestration operations ensuring a component’s local prop-

erties are not violated. Finally, metric-driven operation

means that workstations are continually monitored to pro-

vide the runtime with the necessary information needed to

enforce user or application specific metrics. SODA also

provides fault-resilient management through transactional
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techniques that guarantee control and orchestration actions

taken by SODA do not place components into inconsistent

states [12]. For example, SODA can prevent resource use un-

til a different workstation has fully relinquished the resource.

Such requirements become important as I/O pipelines scale

geographically [13] as network partitions or data center

outages can render parts of the pipeline inoperable.

SODA benefits code usability by allowing code developers

to focus on functionality and algorithmic correctness and

aleviates the need for the scientists who later use the code

from the expensive tuning process and profiling runs.
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Figure 1. High-level view of the SODA framework.

SODA, with its well-defined component interfaces and

programmatic orchestration API, exposes primitives for cod-

ifying SLAs by specifying appropriate actions to take when

certain conditions are detected. Each workstation performs

condition detection at runtime and events of interest are

delivered to the orchestration hierarchy via a continuous

online monitoring middleware.

Using two high end applications, the LAMMPS [14]

molecular dynamics and the GTS [15] fusion simulations,

along with different sets of analytics pipelines (Smart-

Pointer [16] and a wave-space analysis code, respectively),

we evaluate SODA with SLAs that include: (1) bottleneck re-
duction - a global performance-driven SLA that implements

“elastic workstations” to remediate detected I/O pipeline bot-

tlenecks; (2) data reactive - a workstation-level data-centric

policy that changes component behavior based on data

feature detection; and (3) fault recovery - a set of policies to

handle an unexpected component departure such as analysis

codes on an end-user device (e.g, a laptop). Experimental

evaluations show that active, SODA-based management can:

(1) respond to runtime dynamics at different stack levels; (2)

create and enforce SLAs at multiple granularities in an I/O

pipeline; and (3) operate at large scales with low overheads.

SODA constitutes new functionality in the scientific data

management domain. Current I/O staging technologies do

not offer support for dynamically managing end-to-end

properties of tightly coupled analytics running with high end

codes. For instance, earlier data staging work runs statically

profiled analysis routines in configurations sized for worst

case data volumes and processing needs [17]. Similarly, our

recent supercomputer simluation “in-situ” analytics work [3]

schedules and manages only the analytics actions taking

place on individual compute nodes without concern for the

I/O pipeline end-to-end properties affected by such nodes.

The contributions of this work are as follows: (1) we have

specified a model for structuring analytics codes that allows

them to be flexibly orchestrated at run time; (2) we present

a programmatic API that allows for scientist-driven creation

of SLAs; (3) an evaluation of three sets of representative

SLAs using two real science simulations and associated

analytics pipelines; and (4) to our best knowledge, we are the

first to offer this kind of functionality under the constraints

and requirements for typical science applications running on

leadership class machines.

II. RELATED WORK

Previous work on datacenter management and for “big

data” systems uses techniques like elasticity and replication

to provide scalability and fault tolerance [18], [19], [20],

[21], but do not address directly the end-to-end behaviors

and resource restrictions of the parallel analytics pipelines

SODA manages. Specifically, with the SODA model, we

can realize the diverse orchestration semantics needed for

such pipelines expressed with SLAs and drive orchestration

actions that implement the limited types of elasticity permit-

ted by the HPC machine, the degree of reactivity needed for

effective pipeline use, and the desired end-to-end behaviors,

such as throughput or latency.

While SODA may appear like a limited hypervisor, it

is not concerned with node-level partitioning and running

multiple entities with performance and security isolation.

SODA workstations are more akin to “resource islands”

explored for high end multicore processors [22]. They differ

in the explicit orchestration policies and actions specification

and in enabling custom and application-specific methods for

managing analytics pipelines.

Other HPC-centric work on managing analytics and vi-

sualization pipelines [23] provides adaptation policies at

different stack layers (cross-layer adaptation) targeting an

adaptive mesh refinement (AMR) code. It focuses on spe-

cific policies at different layers, to ensure minimal time

to solution, whereas our work investigates the mechanics

and abstractions of management that would be suitable

for analytics pipelines; the policies discussed in [23] are

examples of additional policies suitable for implementation

with the SODA framework.

Initial results [24] demonstrate some of the concepts dis-

cussed here, but the work presented in this paper (1) extends

upon the model and orchestration constructs, (2) explores a
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wider variety of use cases, including an understanding of

how state and metadata are managed (i.e., quality of data

and fault recovery), (3) describes how SLAs are defined

and how policies are constructed to enforce them, and (4)

extends the concepts to pipeline that span multiple machines

by leveraging the Flexpath [25] staging solution operating

across a variety of interconnects. Our earlier solution was

implemented with the Cray Portals API [26] and only

operated on high end machines.

Our earlier work on “service augmentation” [27] demon-

strates the utility of attaching Quality of Service (QoS)

management actions to I/O pipelines and shows that SODA

principles can be applied to other data staging or streaming

infrastructures and systems, including DataSpaces [5] and

Glean [6], both of which use componentized approaches.

III. SODA FRAMEWORK

SODA is a set of run-time abstractions for dynamically

orchestrating science applications and their associated an-

alytics executables. Analytics executables are encapsulated

in workstations that are connected along their I/O paths to

form an I/O pipeline. Orchestration is conducted through an

orchestration hierarchy and is guided by a flexible event-

driven monitoring and control infrastructure. Fig. 1 depicts

SODA’s conceptual model.

A. Assumptions and Desired Properties

The SODA approach rests on assumptions that hold

true for many large-scale scientific applications and their

associated online analytics pipelines.

• Functional Dependencies. Analytics codes expect to

ingest data matching specific formats and layouts.

These analytics functions may need to transform data

to meet algorithmic correctness and/or to export an

analysis function’s discoveries into the data itself. Given

these dependencies in the data-plane, functions in an

analytics pipeline may require in-order operation.

• Heterogeneous Codes. Analytics can have heteroge-

neous architectures and have a wide range of execution

models, fault tolerance, and scaling characteristics.

• Stringent Resource Constraints. Resources are typi-

cally assigned to the compute job statically. Analysis

codes are given “spare” resources, i.e., spare CPU

cycles on simulation nodes [3], [4], reserved staging

nodes [28], [5], or those on smaller, auxiliary clus-

ters perhaps in different physical locations. Analytics

pipelines, therefore, must operate with these limited

resources, without interfering with the simulations and

their output actions including by delaying simulation

completion or adversely affecting other jobs running

on the same platforms.

Given these assumptions and the set of challenges and

application characteristics outlined above, SODA based

pipeline orchestration must meet four design goals. Given

the large variety analytics code characteristics and the dy-

namics they experience at runtime, it is impractical for a

single entity to understand all analytics in some composed

I/O pipelines. Therefore: (1) orchestration routines and
policies should be customizable on a per-workstation basis.

To make decisions at run-time, orchestration functions

require information about when and what actions should

be performed. Gathering this data requires continuously

monitoring pipeline components for their progress, behavior,

and the physical resources they use. Using this information,

orchestration actions can be invoked in a timely manner.

Therefore: (2) orchestration is guided by user-determined
metrics driving per-workstation and cross-workstation (i.e.,
global) orchestration policies.

Ideally, analytics pipeline components should be decou-

pled along the time and space dimensions allowing correct

operation depending only on necessary data availability (i.e.,

from disk or via the network). With well-defined input and

output interfaces, analytics actions can be allowed to run

independently as separate applications (i.e., components),

and enter and leave the pipeline as needed. This enables

using entirely different, dynamically swappable analytics

codes without requiring them to be integrated into a single

executable. Therefore: (3) analytics codes should operate in
a componentized fashion.

Orchestration on one component can jeopardize the exe-

cution of other components. For instance, consider trading

resources between two analytics components when recover-

ing from some detected bottleneck. A failure can occur if

one component, using incorrect resource state data, attempts

to use a resource that has not been fully relinquished by

another component. Therefore: (4) orchestration operations
must be reliable and be resilient to failure.

B. Conceptual Model

1) Workstations: A workstation, depicted in Fig. 2 allows

analytics tasks to be embedded into a dynamically managed

messaging and execution framework. The workstation’s I/O

interfaces are similar in concept to those used in modern

Service Oriented Architectures (SOA). The workstation is

comprised of a set of active replicas and a workstation
orchestrator overseeing its execution.

Active Replicas. Unlike the replication techniques used

in fault tolerant systems where replicas have identical in-

ternal states[29], active replicas in workstations are key

to obtaining scalability: with traditional replication, each

replica performs redundant computations on the same data

items whereas active replicas perform their computations on

different epochs of data assigned to them. For the use-case

discussed in Section V-A, data is assigned to active replicas

in a round-robin fashion, but additional communication

patterns can be supported. Using active replicas, a work-

station orchestrator can increase its degree of parallelism

by spawning a new replica. While this is similar to how
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Map-Reduce jobs scale, note that an individual data epoch

may only be able to be processed by a fixed process count

and that scalability comes from overlapping processing of

different epochs.
Workstation Orchestrator. The workstation orchestrator

provides several functions. First, it collects and organizes

relevant monitoring data from its active replicas and delivers

this information to a higher-level orchestrator. Second, it

provides metadata services for its replicas and contains end-

point information for replicas in neighboring workstations.

Third, it contains potentially custom management primitive

implementations, described next, which allow them to re-

spond to management requests from higher-level orchestra-

tors.
2) Orchestration Constructs: Hierarchical orchestration

affords three primary benefits. First, such hierarchies can

be scaled with ease [30]. Second, distinct per-workstation

orchestrators can offer customized management routines and

separate their local, per-component management states from

global state about entire I/O pipelines. Third, the hierarchy

helps define authority. A global orchestrator is responsible

for operations that re-organize entire pipelines. Workstation

orchestrators are responsible for operations affecting only

their components and resources and respond to management

invocations from higher-level (global) orchestrators.
The following core management primitives enable con-

structing higher-level policies and operations:

• Increase Workstation: allocate more resources to a

workstation with the goal of increasing scalability.

• Decrease Workstation: deallocate resources to a work-

station that may be relatively over-provisioned.

• Offline Workstation: remove all resources from a

workstation and redirect dataflow from upstream to disk

because it is no longer feasible to run a workstation

online due to network partition or insufficient resources.

While the per-workstation orchestrator actions listed

above are invoked by a global orchestrator, the concrete steps

needed to execute these actions within a workstation can be

customized on a per-workstation basis. For example, when

told to “increase”, a code that cannot operate on data epochs

out of order could “increase” by killing its existing active

replicas and spawning with a greater process count.
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Figure 2. Workstation abstraction.

IV. IMPLEMENTATION

A. Workstation
1) Active Replicas: The implementation of SODA work-

stations leverages the widely used ADIOS read and write

interfaces [11]. Using these interfaces, analytics codes can

specify their data requirements and establish communication

via a virtual file name serving as a named communica-

tion channel. To accommodate orchestration at runtime, the

Flexpath [25] ADIOS transport, which allows for online

analytics routines to exchange data, has been extended to

accept and process management messages and state-change

notifications from the replicas’ designated orchestrator. We

also modify the ADIOS interface to expose a communicator

analytics applications can use to interact directly with the

workstation orchestrator.
Flexpath publishers (ADIOS writers) maintain a queue for

each neighboring Flexpath reader replica in a downstream

workstation to hold data epochs. Writers then assign data to

these queues in a fashion determined by the reader work-

station. The current implementation supports round-robin

assignment including the case where one replica consumes

all of the work for an existing replica. This is explained

in more detail in Section V. Orchestration operations can

also lead to internal load balancing actions to offload work

from overly filled queues. Conversely, with a “decrease”

operation, it can re-assign existing work to the remaining

replicas.
2) Orchestrators: Orchestrators are written to be run

as stand-alone executables. Users can create custom or-

chestrators and specify SLAs using a programmatic API

described in Section IV-B. When global orchestrators detect

conditions of interest, they invoke commands on worksta-

tion orchestrators and then distribute any important state

changes to subsequent workstation orchestrators that require

knowledge of such state changes. Workstation orchestrators

are responsible for implementing the commands invoked on

them by global orchestrators and for performing internal

actions on the resources and replicas they manage.

B. Orchestration Interface
The basic primitives listed in Section III-B2 are exposed

as a C interface. Developers use this interface to create cus-

tom orchestrators if needed. SODA ships with some default

implementations to automate elasiticity and recovery from a

failed replica. To meet an SLA at a global orchestrator, the

orchestrator can receive monitoring information as events

and carries out chained primitives to perform actions like

resource trading. When invoked, an orchestration primitive

triggers a set of transactional protocols that indicate a

participant’s progress and distribute any state changes.

C. SODA Information Bus
Monitoring, control, and state change messages are deliv-

ered via the SODA Information Bus, or SIB, implemented

using the EVPath [31] event-driven messaging library.
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Orchestrators and replicas are connected via the SIB’s

overlay graph where workstation orchestrators serve two

roles: (1) aggregation points for monitoring information,

execution metadata, and runtime state information before

delivery to the global orchestrator; and (2) as orchestration

operation entry points into a workstation and the delivery

point for state change notifications (i.e., state that determines

from who replicas read data) from neighboring workstations.

Global orchestrators serve as the root of the SIB and

accept and organize messages from all other orchestrators.

To ensure strong runtime state information consistency, the

current implementation passes all messages relating to state

changes through the root.

In the case of parallel replicas (i.e., MPI based analytics

codes), rank 0 is designated as the message recipient from

the workstation orchestrator. It then uses MPI to disperse the

messages to the remaining ranks. This takes advantage of

MPI’s optimizations and reduces the number of connections

a workstation orchestrator has to maintain.

D. Fault Detection and Recovery

The current implementation detects faults in two ways.

The first uses application-level progress indicators delivered

via periodic heartbeat messages from an application replica

to its workstation-level orchestrator. The second allows the

orchestrator to receive a notification from the kernel when

the connection between an orchestrator and a replica has

been broken. Method 1 does not rely on a specific messaging

technology (e.g., sockets) and can work for a variety of

underlying network interconnects with the disadvantage that

the orchestrator must propagate failure notifications through

the SIB to interested parties. Method 2 allows for any

component interacting with it (orchestrators or other replicas

in the pipeline) to receive the notification without waiting

for failure alerts to propagate through the SIB. Both methods

are explored in our current investigation because they are fa-

miliar to end-users and have well-understood characteristics.

Future work will explore more robust fault detection [32],

[33] and diagnostic [30] mechanisms.

The specifics of how to recover from a component

fault is left to the user via API calls in the associated

orchestrator. For example, issuing an “offline workstation”

operation or spawning a new replica on spare resources (an

“increase workstation” operation). The SODA framework

does provide some fixed options configured at registration

time specifying whether components can deal with data loss.

For a visualization component operating in a “streaming”

fashion, it might be able to tolerate a few missed frames.

For these, we can redirect the data to other replicas that

have not failed or discard the data if none are available. For

codes where missing output epochs could render scientific

results invalid, such as stateful codes, we allow for upstream

data publishers to buffer the data, either in memory or

by leveraging on-node storage (SSDs) via EVPath “storage

stone” facilities, until the failed replica has recovered.

V. EXPERIMENTAL EVALUATION

Experimental evaluations are conducted using two ma-

chines: (i) the Titan supercomputer hosted at Oak Ridge

National Labs and (ii) the Maquis cluster hosted at Georgia

Tech. Titan consists of 18,688 compute nodes each contain-

ing 16 cores and 32Gb memory for a total of 299,008 cores

and a peek performance of over 20 petaflops. The Maquis

cluster is a 16 node Infiniband cluster with each node having

two Intel Xeon quad core processors and 8GB of RAM.

The LAMMPS molecular dynamics simulation and the

SmartPointer analysis toolkit serve as our application drivers

for Titan. We construct two policies to demonstrate the

benefit of the SODA approach and to assess the active

management overheads. We run the GTS fusion simulation

on Maquis and execute the spectral analysis (FFT) code on

a machine at a remote location thereby allowing us to test

the system’s behavior when the pipeline is geographically

distributed. We cannot conduct geographic experiments on

Titan as its security policies and firewall settings prevent

this.
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Figure 4. I/O Pipeline for LAMMPS with SODA

1) LAMMPS and SmartPointer: Figure 4 depicts the

I/O pipeline constructed for the LAMMPS (Large Scale

Atomic/Molecular Massively Parallel Simulator) [14] sci-

ence application using the SmartPointer analysis and visual-

ization toolkit. LAMMPS is a molecular dynamics simula-

tion used across a number of science domains. It is written

with MPI and performs force and energy calculations on

discrete atomic particles. After a number of user-defined
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epochs, it outputs the atomistic simulation data (e.g., atom

types and positions) with the size of this data ranging

fom megabytes to terabytes depending on the science being

investigated.

SmartPointer is a representative analytics pipeline inter-

preting LAMMPS output data to detect and then scien-

tifically explore plastic deformation and crack genesis. In

such scenarios, a force is applied to the material being

simulated until it first starts to break. SmartPointer detects

and categorizes the region geometry around the initial break

and implements functions determining where and when

plastic deformation occurs. We summarize the SmartPointer

codes in the list below with additional detail found in [25],

[24], [16]:

• Lammps Helper: parallel MPI code that aggregates and

filters raw LAMMPS data.

• Bonds: parallel MPI code that performs an all-nearest

neighbor calculation (O(n2)) to label which atoms are

bonded for each output epoch.

• Csym: a serial central symmetry analysis code that

detects plastic deformation.

• CNA: a serial common neighbor analysis code that

executes whenever CSYM determines that a deforma-

tion has occurred. CNA is extremely compute-intensive

(O(n3)) and as such it should only execute when a crack

has been detected.

2) GTS and FFT Analysis Code: As an alternative ap-

plication example, to demonstrate the more general utility

of SODA, we also evaluate our framework with GTS [15],

a plasma fusion simulation with an implementation that ex-

ploits coarse grained process level parallelism using MPI and

more fine-grained thread-level parallelism using OpenMP.

This “particle in cell” code has different output frequencies

for both particles and mesh-level statistics. To examine the

dynamics involved, in particular dangerous transient effects

that might damage a real reactor vessel, it is useful to dynam-

ically evaluate and characterize particular trends on the inner

and outer plasma edges. Unlike the LAMMPS case, these

transients are not as algorithmically identifiable. Secondary

analysis methods are used to infer their existence and then

much more detailed inspection involving direct interaction

with the physicists is used to further the investigation. The

GTS analytics pipeline is a spectral code based on the AMD

Core Math Libraries implementation of FFT that ingests the

phi and Z-ion output arrays from the simulation.

B. Management Policies

For LAMMPS and its SmartPointer pipeline, we have

constructed two policies:

Quality of Service (Global): the Bonds and CNA codes

are slow components compared to the LAMMPS simula-

tion with CNA being the most expensive. Bonds executes

on every output epoch whereas CNA executes only when

CSYM reports a crack. Depending on the output frequency

or how soon a crack is detected, these codes can become

bottlenecks in the pipeline. We create a policy that monitors

queue lengths such that if the global orchestrator detects a

growing queue length reaching a size threshold on some

output workstation, we perform an “increase” operation

spawning additional replicas for the slow component. In this

pipeline, it is either Bonds or CNA. This represents a global

policy seeking to balance pipeline components to ensure

healthy end-to-end throughput. It also allows for the pipeline

to run without needing to carefully provision both Bonds

and CNA codes; the system can handle the provisioning

when needed. While this illustration uses queue lengths,

orchestration could also be triggered by other factors such

as memory consumption or CPU utilization.

Data-centric (Local): requires application introspection

into the data based on the CSYM and CNA components. In

contrast to the first policy, the analysis functions report the

metric of interest (CSYM detects a crack) and the orches-

tration actions (kill CSYM and run CNA) are triggered by

the workstation-level orchestrator. This policy ensures data

quality via correct execution of pipeline analysis functions.

For the GTS and FFT example, the analysis running on

an end user’s machine is connected with the simulation

code over a wide area network. We evaluate workstation

output latency when faced with an unexpected component

departure, e.g., when an end user terminates analysis. Three

recovery polices are tested. Each involves failure detection

on the remote machine and spawning a recovery replica on

the cluster running the simulation. If components need a data

guarantee, they can pay the costs for it. Less critical codes

can avoid these extra costs by tolerating missing output

epochs. The first policy allows for data loss while the second

avoids it. In these two cases, the recovery replica is launched

in response to a failure notification. The third policy takes

advantage of over-provisioning by the workstation spawn-

ing an additional FFT replica on the compute cluster that

remains idle until its orchestrator detects a failure.

C. Quality of Data Policy and Microbenchmarks

SODA-orchestrated I/O is beneficial, but it also imposes

additional overheads on I/O pipelines. The following mea-

surements assess the protocol overheads and compare costs

at different scales for operations invoked at different orches-

tration hierarchy levels. The measurements shown elide the

base constant cost of process instantiation (e.g., for a work-

station increase), as that cost is specific to the underlying

machine’s job scheduler rather than the implementation and

protocols specific to SODA. On the Titan machine, we have

seen highly variable launch times, sometimes higher than 30

seconds.

Orchestration costs are governed both by the inherent

properties of the management methods chosen and their

underlying protocols and by the scales of interacting work-

stations. The latter is due in part to the “direct connect”
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Helper Size 2x16 4x32 8x64
Orchestrators 0.12s 0.126s 0.111s
Helper 0.039s 0.089s 0.158s
Csym/CNA 0.024s 0.031s 0.027s

Table I
INCREASE COMMAND PROTOCOL OVERHEAD

Bonds Size 1x256 2x256 3x256
Orchestrators 0.051s 0.074s 0.063s
Bonds 0.026s 0.05s 0.072s

Table II
DATA-CENTRIC COMMAND PROTOCOL OVERHEAD

nature of the Flexpath transport used in the implementation

of SODA: Flexpath obtains high cross-workstation through-

put by directly connecting the parallel entities of a previous

workstation to the parallel entities of a subsequent one. This

also means, however, that the cost of distributing certain state

changes (e.g., workstation increase) is affected by the size of

the neighboring workstations as each of their parallel entities

must be notified about this state change.

Table I shows the modest protocol overheads for an

increase operation on the Bonds workstation. The row titled

“Helper” represents the time it takes for the Helper work-

station to distribute the Bonds state change. This includes

the time it takes for the workstation orchestrator to send the

state change to each replica (rank 0), and the time it takes

for rank 0 to broadcast this change to the other ranks. The

row titled “Orchestrators” is the total time spent for all mes-

sages between the global and workstation orchestrators to

trigger the operation, and to distribute the state changes. As

expected, use of an orchestration hierarchy allows for good

scalability, demonstrated by the fact that for measurement,

we are increasing the number of Lammps Helper processes

by a factor of 4, but only see a growth of 2x in terms of

protocol cost. Since these management actions do not affect

the number of orchestrators, the communication between

global and workstation-level is not affected by scale.

Table II shows the cost of the protocol used to enforce the

workstation-level data-centric policy, i.e., switch off CSYM

and activate CNA. This represents a control loop triggered

by the workstation orchestrator (when CSYM detects a crack

in the modeled material) that results in a change in the

data flow (Helper redirects its output data to the CNA

component). We see scalability traits similar to that of the

increase operation; the reason this command takes much less

time to execute is because CNA is a single replica serial

component, so the size of the state message is much smaller.

D. Throughput Measurements: QoS Policy

This set of measurements demonstrates the utility of a rep-

resentative performance-based management policy. We com-

pare the throughput of the SODA-orchestrated I/O pipeline

against that of an unmanaged pipeline, where throughput is

represented as a time series in 30 second increments along

the x axis, and the y axis represents the count of output

epochs emitted by the code during that 30 second interval.

LAMMPS Helper Bonds CSYM
Fig 6(a) 8192 64 256 to 768 1
Fig 6(b) 4096 32 128 to 384 1
Fig 6(c) 2048 16 64 to 192 1

Table III
CORE COUNTS FOR THROUGHPUT EXPERIMENTS

Fig. 5 shows the baseline, unmanaged execution, for a

LAMMPS simulation running on 8192 cores and a pipeline

comprised of 64 Lammps Helper cores, 256 Bonds cores,

and 1 CSYM core. The graph shows that as the output queue

for Lammps Helper fills up, LAMMPS’ throughput drops

significantly. This is because it has to block on its output

actions that must wait on queue space to free up. LAMMPS’

throughput converges to that of Bonds, the slow component,

effectively dropping end-to-end throughput to a third of the

ideal target.
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Figure 5. Throughput degradation for unmanaged pipeline.

Fig. 6 depicts the throughput improvements for a set of

QoS-orchestrated runs that demonstrate the SODA runtime’s

ability to provide elasticity at scale. Experiments are run at

three scales, with the process counts displayed in Table III.

For each experiment, the slow workstation is detected and

increased by a replica with the number of processes equal

to the size of the initial replica. For these runs, the crack

in the material did not materialize until the end of the run,

so that the main component needing an increase was the

Bonds code. Fig. 6(a) shows the throughput improvements

for running with 8192 Lammps cores. The vertical lines

represent when Bonds is increased. For this run, we see that

after the first increase (two Bonds replicas total), we see an

improvement in Bonds throughput. However, an additional

increase is needed for Bonds to match the throughput of the

LAMMPS simulation. After this second increase (3 Bonds

replicas, 768 cores total), we see that Bonds can achieve a

higher throughput than the LAMMPS application, as it now

has sufficient resources to start to drain the data that has

built up in the queue.
Figure 6(b) shows a similar result, where after three

increases, Bonds maintains a slightly higher throughput than

the LAMMPS simulation. However, speedup is insufficient

to fully drain the queue in Lammps Helper, so the Bonds

code executes somewhat longer. We see a similar phe-

nomenon in Fig. 6(c), where the global orchestrator does

not increase the Bonds workstation by an additional replica
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(a) 8192 LAMMPS cores with 1 to 3 Bonds replicas of size 256
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(b) 4096 LAMMPS cores with 1 to 3 Bonds replicas of size 128
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(c) 2048 LAMMPS cores with 1 to 4 Bonds replicas of size 64

Figure 6. QoS Policy: throughput improvements.

because the stated policy is to trigger an increase only when

two conditions are met: (1) a maximum queue length of

10 in one of the Helper output queues, and (2) a growing

maximum queue length for 3 consecutive measurements.

For the latter two runs, condition (2) did not trigger. This

example illustrates the utility of explicit policy specification.

An alternative policy omitting the second condition would

have triggered the additional Bonds increase. An energy-

conscious policy might prefer a slight extension in execution

time over the additional energy consumed by using addi-

tional nodes.

Fig. 7 displays the changing queue length, the metric on

which we base throughput management, for an experiment

with the same setup as in Fig. 6(a). This represents the

maximum queue length in the Lammps Helper workstation’s

output queue for the Bonds workstation. Here, the x axis

represents the output epoch, and the y axis represents the

max queue count when that output epoch is inserted into a

queue. As is evident, the stated management policy is having

the desired effect on its metric of interest.
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E. Fault Recovery Policy
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The experimental results reported next have two purposes.

First, we want to understand how SODA’s fault recovery

operations for an unexpected component departure affect the

applications relying on them. To quantify this, we look at

workstation latency, which measures the time it takes for

a workstation to emit an epoch of data. Second, we want

to demonstrate the flexibility the SODA constructs offer to

developers for choosing which tradeoffs make sense for their

executions. For all three cases, we use a heartbeat to detect

a component’s departure, where heartbeats are configured to

run in 10 second intervals, and a component is considered

failed after missing three consecutive heartbeats.

Fig. 8 displays the changes in workstation latency for

three different fault-recovery mechanisms. The x-axis rep-

resents the epoch number for a workstation, and the y-axis

represents the length of time between a step and the previous

step. The first time step for each has a high latency, since

we use the application start time as the base.

The first graph, Fig. 8(a), shows the workstation latency

when recovering from a fault, but allowing for data loss,

which is represented by the discontinuity for the FFT line.

This has the lowest latency across all three because the

previous (in other words, the older) time steps are simply

dropped. Allowing for dropped epochs of data becomes

more even more beneficial with configurations where it

is infeasible, in terms of memory requirements, to buffer

multiple timesteps of data.

The second and third graphs show the changes in latency

when avoiding data loss. As expected, we see a higher

latency than when allowing for data loss as the older

timesteps stay in the queue. The third graph has a lower

latency during the failure and recovery phases, because the

over-provisioning of the codes allowed the FFT replicas to

register with the the orchestrators and get the necessary

metadata to join the stream at the start of the pipeline

execution. This process accounts for the roughly 6 seconds

difference between the third and fourth graphs.

In all three measurements, the dominating factors con-

cerning latency are the heartbeat intervals, the number of

missed heartbeats used to detect a failure, and the GTS

application’s own I/O cycle. For the latter, this is a result

of the Flexpath publisher component checking for notifi-

cations from the workstation orchestrator when calls are

made into the ADIOS interface. As the graph shows for

the GTS latency, I/O epochs occur about every 8 seconds.

Lower latency could be obtained by using shorter heartbeat

intervals.

F. Discussion

SODA-orchestrated I/O pipelines provide elasticity at

scale, data-centric management opportunities, and con-

figurable fault recovery options for the online analytics

pipelines constructed for high end simulations. Through ac-

tive replication, elastic workstations can automatically adjust

their data processing throughput to match application output

rates and the behavior of other workstations with which they

have been composed. Performance-driven policies like those

pertaining to throughput can be replaced with alternative

policies concerned with end-to-end latency, caps on energy

use, or others, without affecting the implementations of

individual analysis components. By exposing SODA controls

to applications, orchestrators’ actions can be based on the

receipt of application-specific events, thus enabling a variety

of application-specific SLAs and management policies. By

taking advantage of a decoupled pub/sub data movement

substrate with internal buffering capabilities, we can provide

flexible recovery options to applications so they can handle

faults like unexpected replica departures.

The performance results shown above demonstrate the

superiority of managed vs. unmanaged I/O, guided by sim-

ple policies realized with low cost management structures.

While able to scale to the high end machines currently

available to our research, the current management policies

implemented for SODA assume each workstation running

on its own dedicated resources, separate from those used by

the application. Management actions that involve scheduling

or resource sharing [3] remain part of our future work.

VI. CONCLUSIONS AND FUTURE WORK

The SODA framework presented in this paper permits

users to embed their scientific data analytics tasks into

a dynamically managed execution environment that (1)

continually monitors analytics components for metrics of

interest, (2) allows users to specify management policies

and enforcement operations at different granularities of the

pipeline, (3) provides elasticity at scale for their analytics

tasks, and (4) does so efficiently with low management

overheads. The utility of SODA is demonstrated with three

policies associated with I/O pipelines consisting of realistic

science applications and analytics pipelines: (1) a global

“quality of service” policy permits an I/O pipeline to recover

from a poor initial resource allocation; (2) a “quality of

data” policy operating at workstation-level allows for new

analytics tasks to be injected into the pipeline to respond to

the richness of features discovered in the data; and (3) fault

recovery policies handle an unexpected component departure

in a geographically distributed pipeline.

Our future work will address two different dimensions of

SODA-based management. One is to gain broader insights

into the resilience issues associated with online management,

exploring the robust failure mechanisms developed in pre-

vious work in an science analytics pipeline setting. Another

task for future work is to better understand management

in environments where analytics operate “in situ” with

simulations, leading to management actions that involve fine

grain resource sharing and scheduling [3] and giving rise to

concerns with performance isolation offered by virtualiza-

tion technologies.
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