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I. INTRODUCTION

Current production HPC IO stack design is unlikely to
offer sufficient features and performance to adequately serve
extreme scale science platform requirements as well as Big
Data problems.

A joint effort between the US Department of Energy’s
Office of Advanced Simulation and Computing and Advanced
Scientific Computing Research commissioned a project to
develop a design and prototype for an IO stack suitable for
the extreme scale environment. It will be referred to as the
Fast Forward Storage and 10 (FFSIO) project. This is a
joint effort led by Lawrence Livermore National Laboratory,
with the DOE Data Management Nexus leads Rob Ross and
Gary Grider as coordinators and contract lead Mark Gary.
The participating labs are LLNL, SNL, LANL, ORNL, PNL,
LBNL, and ANL. Additional industrial partners contracted
include the Intel Lustre team, EMC, DDN, and the HDF
Group. This team has developed a specification set [5] for
a future IO stack to address the identified challenges.
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Fig. 1. Target Architecture and Component Mapping

Overall, the architecture shifts from the idea of files and
directories to containers of objects. At a more detailed view,
the various layers of the IO stack each contribute different
functionality. The architecture (Figure 1) incorporates five
layers, some of which have potentially optional components.
The top layer is generally a high level IO library, such as
the demonstration HDFS5 library [8]. It is in dark blue. Below
the user API is an IO forwarding layer that redirects 10
calls from the compute nodes to the IO dispatching layer (in
black). This 10 forwarding layer is analogous to the function
of the IO nodes in a BlueGene machine or the passive data
staging processes demonstrated previously [6], [1]. The next
two layers have considerable functionality. The 1O dispatcher
(I0OD) serves as the primary storage interface for the IO
stack (in green) and offers features like Burst Buffers to
insulate the persistent storage array from bursty IO workloads.

Ideally, the IOD layer’s functionality can be optional based
on available hardware and compute power provided on the
IO Nodes (IONs). Much of the functionality offered at this
layer would shift either up or down the stack as discussed
in detail below. The Distributed Asynchronous Object Storage
(DAOS) layer serves as the persistent storage interface and
translation layer between the user-visible object model and
the requirements of the underlying storage infrastructure. It
is intended to be the traditional file system-like foundation
on which everything else is built with no dependence on any
technologies specified above it (in dark pink and yellow). At
the bottom is the Versioning Object Storage Device (VOSD)
(in purple). It serves as the interface for storing objects of all
types efficiently for each storage device in the parallel storage
array. Think of this layer as the physical disk interface layer.

II. END-USER API LAYER

Since the proposal specifies a high-level IO API will be
the primary end-user interface for programmatically interacting
with the FFSIO stack, the team used the HDFS5 API and
leveraged the underlying Virtual Object Layer (VOL) to shift
from writing to an HDF? file to using the FFSIO IOD or DAOS
interface. This also serves as a good test determining what are
strictly necessary extensions to an existing IO API to support
the new functionality. The additional functionality, such as
transactions, can be ignored for legacy implementations, but
these applications will not be able to take advantage of the
asynchronous IO support inherent to the new APIL. The addi-
tions comprise API extensions and function analysis shipping
from compute nodes to IO nodes.

Since HDFS5 has traditionally offered an interface focused
on files and the internal data types, such as datasets, these
concepts must be mapped onto the proposed FFSIO data
storage concepts. At a high level, think of the HDF5 types
mapping to FFSIO types as follows: file — container, dataset
— array, and groups and attributes — key-value store.

III. IO FORWARDING LAYER

The 10 Forwarding layer offers a mechanism to reduce
the concurrency impact of the massive process count on the
storage stack. The BlueGene platform incorporated dedicated
hardware to perform this role. The proposed functionality for
this layer, beyond managing the number of connections to the
10D layer, is to implement function shipping from the compute
nodes to the IO nodes.

IV. 10O DISPATCHER LAYER
Strictly speaking, the IO Dispatcher layer and included
functionality, such as burst buffers, is optional. All of the
functionality can be handled by other portions of the stack.



IOD has three main purposes. First, the burst buffers work as
a fast cache absorbing write operations that then trickles out to
the central storage array. It can also be used to retrieve objects
from the central storage array for more efficient read operations
and offers data filtering to make client reads more efficient.
Second, it offers the transaction mechanism for controlling
data set visibility and to manage faults that could expose an
incomplete or corrupt data set to users. These transactions
are local to the IOD layer until persisted to the DAOS layer
eliminating the need for burdening the persistent storage with
transient data. Third, data processing operations can be placed
in the IOD. These operations are intended to offer functionality
like data rearrangement and filtering prior to data reaching the
central storage array.

A. FFSIO Data Model Types

With the shift from a directories and stream-of-bytes files
model to the container and object model, some description is
required to better understand how these concepts are being
used as well as the raw benefits.

A container is similar to a file, but stored within a hash
space rather than a hierarchy. It holds a collection of objects
that are treated as a unit in isolation.

The base type for the container is a key-value store. A tree
of key-value stores are used to represent the hierarchy within
an HDFS5 file with objects linked into various levels of the tree.

Data is stored as either a blob or a multi-dimensional array.
The main difference between the two is that by annotating an
object as an array, advanced data management operations can
be applied.

B. Burst Buffers

The idea of burst buffers were initially explored in the
context of data staging [2], [1], [6], [9]. These initial designs
all use extra compute nodes to represent the data storage buffer
given the lack of any dedicated hardware support for this
functionality. The desired outcome of these initial studies is
to motivate how such functionality might be incorporated and
the potential benefits. Later, these concepts were incorporated
into the existing 10 stack architecture [7], [4], [3].

V. DAOS LAYER

The Distributed Asynchronous Object Storage layer serves
as the traditional parallel file system interface layer for the
storage devices. This is the consistent, global view of the
underlying devices represented in this stack by the VOSD
layer.

This is the layer where the container/object model is
translated into the physical storage requirements dictated by
the physical storage underneath (the VOSD layer). The two
key design elements of this layer are the handling of epochs
and the mapping of containers and objects to the underlying
storage.

To address consistency issues between platforms, contain-
ers at the DAOS layer must know of every transaction.

VI. VOSD LAYER
The Versioning Object Storage Device (OSD) layer oper-
ates as the interface for each persistent storage device used to
support the parallel storage array. In the purest form, it uses
a local file system to arrange storage of objects that represent
parts of the higher level objects in containers.

VII. DEMONSTRATION

This stack has an early prototype implementation intended
to test concepts rather than performance and scalability. It has
focused on examining the interaction of the different APIs for
each layer to flesh out any detailed requirements or concerns
that may have been missed in the conceptualization of this IO
stack. To demonstrate the viability of the IO stack described
in this paper, we show some very early performance results
from the untuned prototype.

All of the tests are performed on the Buffy Cray XC30-AC
at LANL.

The results (graphs in poster) show the performance of
reading and writing different sizes for 56 clients, the smallest
client count when performance stabilizes in the number of
hosts tests (presented on the poster). The performance of both
of these tests are reported to give a very rough idea of the
overhead that might be involved. Rather than a true overhead,
this should be considered the maximum overhead that should
be expected once an optimized, fully functional IO stack
is deployed without relying on translating to an underlying
parallel file system.
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