
For Peer Review

Hello ADIOS: The Challenges and Lessons of Developing

Leadership Class I/O Frameworks

Journal: Concurrency and Computation: Practice and Experience

Manuscript ID: CPE-12-0293.R1

Editor Selection: Prof. Geoffrey C. Fox

Wiley - Manuscript type: Research Article

Date Submitted by the Author: 18-Jul-2013

Complete List of Authors: Liu, Qing; Oak Ridge National Laboratory,
Logan, Jeremy; University of Tennessee, RDAV
Tian, Yuan
Abbasi, Hasan; Oak Ridge National Laboratory,
Podhorszki, Norbert; Oak Ridge National Laboratory,

Choi, Jong; Oak Ridge National Laboratory,
Klasky, Scott; Oak Ridge National Laboratory,
Tchoua, Roselyne; Oak Ridge National Laboratory,
Lofstead, Jay
Oldfield, Ron
Parashar, Manish; Rutgers, Department of Electrical & Computer
Engineering
Samatova, Nagiza; North Carolina State University,
Schwan, Karsten; Georgia Tech,
Shoshani, Arie
Wolf, Matthew; Georgia Tech,
Wu, Kesheng

Yu, Weikuan

Keywords: High Performance Computing, High Performance I/O, I/O Middleware

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Hello ADIOS: The Challenges and Lessons of Developing
Leadership Class I/O Frameworks

Qing Liu1, Jeremy Logan2, Yuan Tian2, Hasan Abbasi1, Norbert Podhorszki1,
Jong Youl Choi1, Scott Klasky1, Roselyne Tchoua1, Jay Lofstead3, Ron Oldfield3,

Manish Parashar4, Nagiza Samatova1, Karsten Schwan6, Arie Shoshani8,
Matthew Wolf6, Kesheng Wu8, Weikuan Yu7

1Oak Ridge National Laboratory
2University of Tennessee

3Sandia National Laboratories
4Rutgers, The State University of New Jersey

5North Carolina State University
6Georgia Tech

7Auburn University
8Lawrence Berkeley National Laboratory

SUMMARY

Applications running on leadership platforms are more and more bottlenecked by storage I/O. In an effort to
combat the increasing disparity between I/O throughput and compute capability, we created ADIOS in 2005.
Focusing on putting users first with a Service Oriented Architecture, we combined cutting edge research into
new I/O techniques with a design effort to create near optimal I/O methods. As a result, ADIOS provides the
highest level of synchronous I/O performance for a number of mission critical applications at various DOE
Leadership Computing Facilities. Meanwhile ADIOS is leading the push for next generation techniques
including staging and data processing pipelines. In this paper we describe the startling observations we
have made in the last half decade of I/O research and development, and elaborate the lessons we have
learned along this journey. We also detail some of the challenges that remain as we look towards the coming
Exascale era. Copyright c© 0000 John Wiley & Sons, Ltd.

1. INTRODUCTION

In the past decade the High Performance Computing community has had a renewed focus on
alleviating I/O bottlenecks in scientific applications. This is due to the growing imbalance between
the computational capabilities of leadership class systems as measured by FLOPS compared with
the maximum I/O bandwidth of these systems. In fact, while the computational capability has
certainly kept up with Moore’s law, the I/O capability of systems has entirely failed to keep pace
with this rate of growth. Consider, for instance, the time taken to write the entire system memory
to storage has increased almost five fold from 350s on ASCI Purple to 1500s for Jaguar despite
an increase in raw compute performance of almost 3 orders of magnitude. In raw numbers, the I/O
throughput has increased by a mere 43% from 140GB/s to 200GB/s. Complicating this is the fact
that actually achieving this maximum bandwidth has not become any easier.

It has been clear for some time that increasingly the constraints in scaling up applications to
the next order (from Terascale to Petascale to Exascale) will require a strong emphasis on data
management and I/O research. In 2005, it was with this goal that the research project was started
at Oak Ridge National Laboratorry that lead to the development of the Adaptable I/O System
(ADIOS) [1] I/O framework.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

Page 1 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2

One major focus of ADIOS has been on I/O performance, where it has demonstrated superiority
for many leadership applications. To illustrate this, Figure 1 compares ADIOS performance against
carefully tuned MPI-IO code for two applications. As can be seen, both applications achieved
approximately 30GB/s write performance with ADIOS, as compared with less than 3GB/s with
MPI-IO.

Figure 1. ADIOS Performance Comparison
This performance-oriented approach makes ADIOS well suited for large-scale high-performance

scientific applications, such as combustion simulation (S3D), Gyrokinetic Toroidal Code (GTC),
and plasma fusion simulation code (XGC). In contrast, many Big Data applications work with the
MapReduce framework in a Cloud computing environment, in which distributed data management
and processing is the primary concern. While the MapReduce framework seeks cost-effective
computing environments by making best efforts to avoid data movement by instead moving
computation to data, ADIOS pursues the most effective data management schemes to provide
applications the maximum computation and resource utilization in HPC environments.

ADIOS was developed with the understanding that we must not only address the bottlenecks for
current applications and hardware platforms but also provide a path forward for the next generation
of applications and systems that would need to both maximize bandwidth to the storage system
and also support transparently working around the storage system bandwidth limitations with new
techniques and tools. To support the diverse operating modes of both using persistent storage and
other data storage and processing technology, we made a great effort to provide a simplified interface
to application developers, offering a simple, portable and scalable way for scientists to manage data
that may need to be written, read or processed during simulation runs. This required abstracting
away many decisions typically made in the application code so that they may be configured
externally.

In addition to this focused interface with external configuration options, common services
were incorporated to afford optimizations beyond those for a single platform, such as buffering,
aggregation, subfiling, and chunking with options to select each based on the data distribution
characteristics of the application. A variety of asynchronous I/O techniques have been investigated
and are being integrated with ADIOS. A recognition of application complexity has led to
new techniques for testing I/O performance by extracting I/O patterns from applications and
automatically generating benchmark codes. And finally, the march toward exascale has fueled the
need to consider additional features such as compression and indexing to better cope with the
expected tsunami of data. These features are all supported by the ADIOS software stack, which
is shown in Figure 2.

2. HISTORY OF ADIOS

The increasing gap between the compute capabilities of leadership class HPC machines and their
I/O capabilities has served as the motivation for a large number of research efforts into better I/O

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 2 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

3

ADIOS	
 interface	
 (C,	
 Fortran,	

Java,	
 Matlab,	
 Python)	

MPI	
 Lustre	
 Aggregate	
 HDF5	
 NetCDF4	

Big	
 Data	
 Applica>ons	

POSIX	

File	
 I/O	

Staging	
 I/O	

High-­‐Speed	
 Interconnect	

Parallel	
 and	
 Distributed	
 Storage	

ADIOS-­‐BP	

Buffering	
 Scheduling	
 Transforma>on	

Kernel	

Dataspaces	
 FlexPath	

Infiniband	
 Cray	
 Portals	
 Cray	
 uGNI	
 TCP	
 Socket	

ADIOS-­‐BP	

Interface	
 layer	

Kernel	
 layer	

Plugin	
 layer	

•  HDF5:	
 Hierarchical	
 Data	
 Format	
 5	

•  NetCDF4:	
 Network	
 Common	
 Data	
 Format	
 4	

•  Dataspace:	
 staging	
 I/O	
 plugin	
 contributed	
 by	

Rutgers	
 University	

•  FlexPath:	
 staging	
 I/O	
 plugin	
 contributed	
 by	

Georgia	
 Tech	

•  Infiniband:	
 standard	
 low	
 level	
 network	
 API	

•  Cray	
 Portals:	
 low	
 level	
 network	
 API	
 for	
 Cray	
 XT	

•  Cray	
 uGNI:	
 low	
 level	
 network	
 API	
 for	
 Cray	
 XE/

XK5	

Figure 2. ADIOS Software Stack

techniques[2]. This focus on improving I/O performance, in conjunction with data organization and
layout that better matches the requirements of scientific users has led to the development of parallel
I/O techniques such as MPI-IO [3], HDF[4, 5] and netCDF[6, 7, 8]. The evolving requirements for
addressing large scale challenges has necessitated continuous developmental efforts within these
projects. ADIOS, like these libraries, comes from a community where performance is paramount,
but with a greater focus on breaking from the non-scalable paradigms of POSIX I/O semantics
and file based I/O. PLFS [9] is an ongoing effort to reinvent the file system interface for better
performance in checkpoint-restart use cases. Similar to ADIOS, PLFS was designed to address the
mismatch between how data is storage on parallel file systems and how it is logically represented
within the application. The PLFS approach uses a user level file system interface (FUSE) to provide
some of the performance benefits of ADIOS without requiring substantial changes in the application
source code. Recent work on PLFS [10] also leverages the enhanced meta-data available to HDF5
to provide a semantic aware data storage layer while maintaining its performance advantages.
This alternate approach maintains the traditional semantics for I/O, but is limited to moving data
only to storage without leveraging in-situ computation to reduce the data management burden on
applications.

The initial impetus for the development of ADIOS was from the challenge of data management
for the visualization of fusion simulations such as the Gyro Kinetic Toroidal Code (GTC)[11].
In particular, the problem that fusion scientists faced was the difficulty in running large scale
simulations that produced vast volumes of data. This data was required not just for checkpoint-
restart, but also to provide scientific insights through analysis and visualization. The fusion scientists
were not interested in spending a significant development effort in optimizing the application’s I/O
for a single platform, only to find the next iteration of the supercomputer make moot their hard
work. Moreover, the best performing I/O technique at the time, single file per process, had started
to become bottlenecked by the metadata operations. As applications scaled, the number of files was
also becoming unmanageable. The alternate solution of creating a logically contiguous file using
MPI-IO also suffered from limited scalability. The additional synchronization and communication
required to organize the data in the file was a scalability bottleneck, limiting applications such as
S3D[12] and GTC from scaling to the largest supercomputers.

Two key insights have driven the design of ADIOS. Firstly, users do not need to be aware of the
low level layout and organization of scientific data. Thus, a smart I/O middleware can organize the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 3 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4

bits in any manner, so long as the actual information in the data is maintained. Secondly, scientific
users should not be burdened with optimizations for each platform (and for each evolution of that
platform) they use. Thus any I/O middleware seeking to solve the data challenges should be rich
enough to provide platform specific optimizations for I/O without increasing the complexity of the
I/O routines.

Both insights can be explained with a simple example. Consider a simulation that produces data
from each parallel process, to be later consumed as a global array for visualization. It is of no
significance if the processes output data into separate files or into a single file, as long as the data
can be read using global offsets. Moreover, optimizing the data output procedures for a specific
configuration of the parallel file system is not important to the user. Parameters like stripe size,
stripe count, etc, do not add any meaningful semantics to the data itself and should not be part of
the application itself.

A secondary, though just as significant insight motivated the design of ADIOS. The ever
increasing mismatch between the scalability of I/O and computation creates an inherent scalability
limit for synchronous I/O. Asynchronous file system efforts such as the light weight file system
(LWFS) [13] have been presented as an alternate to both the metadata and synchronous I/O
obstacles. The tight security and isolation requirements for supercomputing centers, however,
affected the impact that such efforts could have on real applications. Without a proper security
and code review no supercomputing center would allow a new research file system to be deployed
on production machines.

Based on these observations ADIOS was born with three key ideas.

1. Abstraction of the I/O technique. As noted earlier, the burden on the computational
scientists was increasingly become unsustainable. ADIOS introduced a simple abstract API
for the developer to output data from her application, while allowing a user to select a specific
I/O method that was optimized for the current platform.

2. Support for data processing pipelines. Instead of pushing more functionality into the file
system, or even radically modifying the file system, ADIOS allowed users to define additional
staging nodes that could easily replicate the functionality found in file systems such as
LWFS. Utilizing asynchronous buffered data movement techniques minimized the time the
application spent waiting on I/O resources. The use of fully functional computational nodes
for staging also opened up new avenues for in-situ data processing, for visualization, analysis
or even data reorganization.

3. Service Oriented Architecture. The most fundamental idea in ADIOS was to provide a
consistent interface to the application developer, while still allowing developers to create new
I/O techniques that could address their specific challenges. By enabling these services, ADIOS
provided a research platform for the development of new techniques in high performance
I/O. This, in turn, also allowed new I/O methods to be easily evaluated and tested with new
applications and on new platforms, and greatly enriched the choices available to the users.

3. ADIOS DESIGN

Application developers had been using various I/O solutions, such as Fortran’s native I/O, MPI-
IO, HDF5 or ad-hoc solutions to manage the scientific data. Given the sometimes vast differences
between each new HPC platform deployed, these techniques did not retain their performance as
the code was moved to these new systems. The I/O strategy had to be redesigned and the code
rewritten for each new platform. While developers are usually enthusiastic about writing new
parallel computation code for new programming paradigms and new architectures, the I/O routines
are frequently perceived as only a burden causing little effort to be expended on them. Moreover,
the complexity of the I/O subsystem is not documented well requiring experimentation to figure
out what works well on a given system for a given application size and data distribution. As a
result, scientists avoid reworking I/O routines and instead regularly scale down the output size to
the bare minimum to avoid spending too much of the allocated computer time waiting for I/O to

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 4 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

5

complete. Some applications even skip writing checkpoint restart files when running on hundreds
of thousands of cores risking wasting valuable allocation time if any fault causes the application to
abort prematurely.

The lesson learned is to separate the listing of I/O operations in the application code from the
I/O strategy employed on the current platform and for a given run size. The simplified ADIOS
API avoids hiding complexity and performance problems in the IO routine calls by eliminating the
variety of options available in the application code. What this yields is a simple description of the
variables to be written in the application code with an external configuration to declare what to do
with the data. It could be written to storage or passed to some in-flight data processing framework
with no knowledge of the host application code. By separating these concerns, erroneous code
for the I/O routines due to the misunderstandings and incorrect assumptions by a developer from
studying the documentation and the examples is avoided. It also affords incorporating new data
management techniques that may not have been envisioned when the IO routines were initially
developed.

The basic design decisions for ADIOS have been the following

• Simple programming API that does not express I/O strategy, but instead just declares what to
output,

• XML-based external description of output data and selection of I/O strategy (including the
selection of multiple techniques for a single output operation),

• Multiple transport methods selectable at runtime,
• Self describing, log-based file format combined with buffered writing for best possible write

performance.

At a high level, ADIOS is a I/O library that consists of write, read API along with a few utilities,
for example, to query and convert the data. The library itself involves very minor overhead and has
only about 40 API’s for C bindings.

3.1. Simple API

The write API of ADIOS is designed to be as close to the POSIX API as possible. The single
necessary extension was the adios group size call as a way to more easily support effective buffering
and efficient file layout for maximum performance. Initialization and finalization calls in the ADIOS
framework affords opportunity for each transport method to perform operations such as connecting
to external resources, pre-allocating resources, and ultimately cleaning up these resources during
the finalize call. The output should be ‘open’ed (see Listing 1, and the size of the data the given
process is going to write in total is provided. Simple write statements are used per variable and a
close statement ends the list of I/O statements signaling the end of the I/O operation.

adios_open (&fd, "analysis", filename, "w", &comm);
adios_group_size (fd, groupsize, total);
adios_write (fd, "NX", &NX);
adios_write (fd, "NY", &NY);
adios_write (fd, "temperature", t);
adios_close (fd);

Listing 1: Example ADIOS code

The rest of the definition is given externally in an XML file, e.g. defining that ‘t’ is a double array
of ‘NX’ and ‘NY’ scalar variables in the code and it should be known as ‘temperature’ for readers
of the output file. The semantics of the API only declares that any variables listed in the adios write
statements are safely copied, and likely written, when the adios close() returns. Assuming the output
is destined for disk, the actual file open operations may occur later then adios open() call and writes
happen usually during the adios close() call. In the case of asynchronous I/O, the write operations
will likely take place after the adios close() call completes.

The simple semantics of the ADIOS API allows specific methods to optimize their behavior for
performance or functionality without modifying the semantics and breaking the portability of the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 5 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6

code. Despite the simplicity of the ADIOS API, it should be emphasized that the self-describing
nature of ADIOS, as well as the lack of any byte level storage specification, gives ADIOS more
freedom for optimization compared to lower level I/O APIs such as POSIX or MPI-IO whose
APIs stipulate where each byte should be placed. In contrast, ADIOS methods are free to arrange
data in whatever manner provides optimal performance, power, or resilience. Direct performance
comparisons of ADIOS to MPI-IO or POSIX are thus more difficult to make.

On the read side, ADIOS read API provides a uniform interface for handling both files and data
streams. The design of read API allows a user code to be oblivious of the data being handled,
regardless whether it’s a stream or file. It supports a rich set of data selections, including bounding
box, points and data chunks and allows a user code to advance to a certain step of the data and
perform read operations, which fits nicely to the majority of scientific applications that solves
problems iteratively.

3.2. XML-based External Description

ADIOS uses an external XML file to describe I/O characteristics such as data types, sizes and select
I/O operations for each I/O grouping. As such, the I/O routines in the user code can be simplified
and transparently change the way data is processed. In particular, the XML includes data hierarchy,
data type specifications, grouping and which method(s) to use to process the data. The application
calls for outputting the data can be generated automatically from the XML file and included at
the right place in the application code using pre-processor directives. This simplifies any changes
necessary should the output need to change. Simply change the XML file, regenerate the included
API calls, and recompile. The only requirement is that the variables referenced in the XML file
should be visible at that location in the code. All metadata information, including the path of a
variable and any attributes providing extra information can be added and modified later in the XML
file without recompiling the code. The same applies for selecting the actual method(s) to use for
a particular run. This separation of the definition and organization of data in the self-describing,
metadata rich output affords defining a generic schema for automatic visualization purposes [14]
and for generating I/O skeleton applications representing large scale codes (see Section 4.6). Recent
changes have introduced the possibility of encoding all of the information contained in the XML file
into the source code to avoid the need for another file during execution, but it is not recommended
due to the lack of flexibility this imposes. In spite of this limitation, this option has proven popular
with a small subset of users.

3.3. Transport Methods

ADIOS provides methods for three process-file patterns: a) N-to-1, i.e., single file written
collectively by all processes, b) N-to-N, i.e., each process writing to a separate file and c) N-to-
M, i.e., grouping processes to a limited number of output files, by aggregation. N-to-1 methods
include the ‘MPI’ method that uses MPI-IO calls, but due to the local buffering and the output
file format, cross-communication among processes for data reorganization is avoided achieving
the best possible performance for MPI-IO. Other N-to-1 methods write popular file formats, like
parallel HDF5 and NetCDF4. These transport methods are there for user convenience rather than
for ultimate performance because these methods are inherently limited by the performance of the
underlying HDF5 and NetCDF4 libraries. The ‘POSIX’ transport method is an N-to-N method,
where each process’ buffered data is written using a single call each into a separate file. It simply
avoids the optimizations provided and defenses developed by parallel file systems for complicated
I/O patterns and directly uses their basic functionality and bursts data with high bandwidth. It also
writes a metadata file that affords users dealing with the collection of files by a reading application
as a single file. The N-to-M method aggregates data to a subset of processors and then, like the
N-to-N method, writes separate files. Currently, this method is the fastest and most scalable ADIOS
transport method. All applications using ADIOS apply this method when running with more than
30,000 cores.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 6 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

7

3.4. ADIOS-BP file format

The file format designed for ADIOS provides a self-describing data format, a log-based data
organization and redundant metadata for resiliency and performance. Self-describing formats like
HDF5 and NetCDF are popular because the content of a file can be discovered by people long after
the developers and their independent notes on the content are gone.

The log-based data organization affords ADIOS writing each process’ output data into a separate
chunk of the file concurrently. In contrast with logically contiguous file formats where the data in
the memory of the processes has to be reorganized to be stored on disk according to the global,
logical organization, this format eliminates i) communication among processes when writing to
reorder data and ii) seeking to multiple offsets in the file by a process to write data interleaved
with what is written by other processes. Coupled with buffering by the processes, discussed in the
next section, that exploits the best available I/O bandwidth by streaming large, contiguous chunks
to disk, the destination format itself avoids bottlenecks that would hamper that performance. The
many processes writing to different offsets in a file or to different files even are avoiding each other
on a parallel file system to the extent possible. In most cases, each process attempts to write to a
single stripe target to avoid the metadata server overhead of spanning storage targets. The reading
performance of this choice was shown to be generally advantageous as well [15].

4. LESSONS

Below are the lessons learned and knowledge gained through working closely with users on parallel
I/O. We believe these experiences on leadership computers are not only beneficial to ADIOS users,
but also relevant to the entire HPC community as we move forward into exascale era.

4.1. Buffering and Aggregation

Buffering and aggregation are important techniques to improve storage I/O performance particularly
for large scale simulations. These techniques effectively reduced unnecessary disk seeks caused by
multiple small writes, and make large streaming writes possible. Nevertheless, they need to be done
carefully to ensure scalability and reduce contention.

Since the ADIOS 1.2 release, a new I/O method, MPI AMR, incorporates multi-level buffering
and significantly boost I/O performance even for codes that write/read only a tiny amount of
data. In this method, there are two levels of data aggregation underneath the ADIOS write calls.
This is intended to make the final data chunks as large as possible when flushed to disk, and as
a result, expensive disk seeks can be avoided. At the first level, data is aggregated in memory
within a single processes for all variables output by the adios write statements, i.e., a write-behind
strategy. For the example in the ADIOS code above, the variables NX, NY and temperature in the
adios write statements will be copied to the ADIOS internal buffer, the maximum size of which can
be configured through ADIOS XML file, instead of being flushed out to disk during each adios write
call.

Meanwhile, a second level of aggregation occurs between a subset of the processes. This builds
the buffers larger by combining the relatively small amount of data each processes has to output
(after the first-level aggregation). A good example is the S3D combustion code [16]. In a typical
96,000-core S3D run on JaguarPF, each processor outputs less than 2 MB total. In this case, many
small writes to disk hurt I/O performance. As has been shown elsewhere, making data larger using
MPI collectives to exchange bulk data between processors can be costly [17, 18]. Here we argue
four reasons that aggregation technique, as implemented by ADIOS, can be beneficial.

1. The interconnects in high-end computing systems are becoming faster and faster. For example,
the Cray Gemini interconnect on Cray XK6 can sustain up to 20 GB/sec [19]

2. The issue with collective operations in MPI-IO is not the volume of data to exchange. Instead,
the dominating factor that slows down application performance is the frequency of collective
operations and possibility of lock contention. As discussed in Section 3.1, the design of the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 7 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8

100 1000 10000 100000
Processors

0

5

10

15

20

W
rit

e
Sp

ee
d

(G
B/

se
c)

aggregation ratio 50:1
aggregation ratio 10:1
no aggregation N:N (POSIX)
no aggregation N:1 (MPI_LUSTRE)

Figure 3. Aggregation versus no aggregation for a combustion simulation

MPI-IO API also makes optimization of these codes more difficult. Our earlier work [20]
shows that MPI Bcast is called 314,800 times in the Chimera run, which take 25% of the wall
clock time.

3. The collective operation in ADIOS is done in a very controlled manner limiting inter-node
communication. All MPI processes are split into sub-groups and aggregation is done within
a sub-communicator for a subset of nodes reducing contention between groups. Meanwhile,
indices are generated first within a group and then sent by all the aggregating processes to
root process (e.g., rank 0) to avoid global collectives. This is similar to the approach taken in
the ParColl [17] paper.

4. Most of today’s computing resources, such as the Jaguar Cray XK6, use multicore CPUs thus
aggregation among the cores within a single chip is inexpensive as the cost is close to that of
a memcpy() operation.

4.2. Subfiles

Subfiles offer several key advantages over one file and one file per process. The latter two usually
yield similar performance as subfiles at small core count. However, at large scale, they pose heavy
pressure to either storage target or metadata servers, and therefore are not feasible.

One file requires all processes to collectively negotiate the proper write offsets. This usually
involves two rounds of MPI collective calls among the processors that participates in I/O, i.e.,
MPI Gather to collect local sizes and an MPI Scatter to distribute the offsets to individual processes,
which can be very costly at scale. Splitting communicators into smaller groups with each group
writing to a subfile can work around this issue. However, writing to one shared file can cause serious
lock contention, particularly at scale, which essentially serializes I/O from individual processes and
slows down the I/O speed. One way to tackle this problem is to make the write block-aligned (i.e.,
stripe aligned for Lustre). However, if the size of data from each process varies, it is hard to pick the
right block/stripe size that makes the access aligned without incorporating some amount of empty
space. Additionally, parallel file systems like Lustre often provide default file striping designed to
limit I/O pressure from other users. The downside to this artificial limitation is the strict reduction
in the maximum parallel I/O performance for this file. Subfiles are a natural work-around solution
that can fully utilizes storage resources, albeit selfishly for a single application.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 8 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

9

One file per process is a special case of subfiles where the number of subfiles equals the number
of processes. However one file per process is not scalable due to poor metadata performance for
creating files for every process and therefore more sophisticated management is needed.

Subfiling is a compromise between one file and one file per process and makes writing
significantly faster. The design objectives of subfiling are: 1) introduce no additional complexities
from a user perspective. Writing and reading subfiles should be as simple as writing and reading
from a single, shared file; 2) offer significantly higher I/O bandwidth at scale than the other process
to file decompositions.

4.3. Balancing Read and Write Performance

Many efforts, both past and present, have focused heavily on improving the I/O performance by
studying the output side of the problem, but the read performance of scientific applications on large-
scale systems has not received the same level of attention, despite its importance to drive scientific
insight through scientific simulation, analysis workflows and visualization. Worse yet, current write
techniques often overlook the read side of the I/O equation and, as a result, have a substantial
negative impact on read performance. Our strategy with ADIOS is to provide a favorable data layout
through data reorganization during output, without introducing significant write overhead.

To improve read performance, a thorough understanding of application’s access patterns is
crucial. Based on the authors’ direct experience with many application teams in the U.S. and
beyond, including combustion (S3D [16]), fusion (GTC [11], GTS [21], XGC-1 [22]), earthquake
simulation (SCEC [23]), MHD (Pixie3D [24]), numerical relativity codes (PAMR [25]), and
supernova (Chimera [26]) codes, there are four main fundamental reading patterns for application
data analysis:

• Read all of a single variable (c.f. Figure 4(a)). This would be representative of reading the
temperature across a simulation space, for example.

• Read an arbitrary orthogonal subvolume (c.f. Figure 4(b)).
• Read an arbitrary orthogonal full plane (c.f. Figure 4(c)).
• Read multiple variables together. This would be representative of reading the components of

a magnetic field vector, for example.

(a) Variable (b) Subvolume (c) 2-D Planes

Figure 4. A 5× 5× 5 Array (k: fastest dimension)

Other reading patterns are either composed of a mixture of these patterns or are minor variations.
For example, reading entire checkpoint-restart datasets can be perceived as an extended case of
reading multiple variables together. Among these patterns, reading orthogonal planes has been
the least studied. However, it is a very commonly used reading pattern by scientific applications.
For example, for combustion studies with S3D [27], the computation was targeted at a variable of
1408× 1080× 1100 points (12GB), but the majority of analysis is performed on the orthogonal
planes of the variable (either 1408× 1080 or 1080× 1100 points). However, the performance of
reading such planes (a.k.a., planar read) is often bottlenecked by the extremely poor performance
when retrieving data along slow dimensions from multidimensional arrays [28].

There are two main issues faced by such access patterns of multidimensional arrays. The first
is the discrepancy between the physical limitations of magnetic storage and the common access

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 9 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10

patterns of scientific applications. Physical disks in most HPC systems are optimized to access
one-dimensional large blocks of sequential data while scientific data is normally multidimensional.
Mapping from a n-dimensional logical space of the scientific data to a 1- dimensional space of
storage results in the noncontiguous placement of data points on non-primary dimension. This
causes read performance to suffer due to either significant disk operation overhead such as excessive
seek time, or data overhead caused by reading additional data to avoid seeks for many popular data
organization strategies. A current popular solution to this problem is to store multiple copies of
the same data with a different dimension being used as the primary dimension in each copy. For
example, climate researchers at the Geophysical Fluid Dynamics Laboratory (GFDL) make multiple
replicas of all datasets with x, y, z and time as the fastest dimension, respectively. Such workarounds
help reduce the reading time [29], but increase the total storage size by 4 times.

Second, the peak aggregated bandwidth of parallel storage systems cannot be effectively utilized
when only a subset of the data is requested. This occurs because the requested data is concentrated
on a very small number of storage targets with current data placement strategies, causing a
substantial performance degradation and limited scalability. For example, the 2-D plane on the
fast dimension of a 3-D array with logically contiguous data organization can be easily stored
on one or very few storage nodes. Systems such as the Gordon [30] supercomputer at San Diego
Supercomputer Center attempt to address this problem through new hardware such as solid-state
devices (SSDs). However, without optimizing data organizations, even SSDs cannot maximize
concurrency and therefore peak bandwidth. While disk seeks are no longer an issue with solid state
storage, aggregate performance achievable based on data distribution is still an issue.

Currently there are two popular data organizations: logically contiguous (LC) and chunking.
Figure 5 compares these two data organizations and show how the read performance can be different
between these organizations. In the figure, a 2-D array with 9×9 integer elements is written on
three storage targets using LC and chunking, respectively. The stripe width is equal to 36 bytes.
The arrowed lines represent the order in which these data elements are stored on storage devices,
e.g., Object Storage Targets (OSTs) in the case of Lustre file system. The circled numbers indicate
targets on which data elements are located; the shaded squares are the requested data elements. If
we read in the row-major order with three processes, for both organizations, each process needs
1 seek operation and 1 read operation to retrieve the data. However, chunking is expected to be
3 times faster than LC since LC serializes read requests from three processes to one OST. Data
concentration issue is observed for both LC and chunking, where either data on fast dimension or
slow dimension is stored on one storage target.

(a) Logically Contiguous (b) Chunking

Figure 5. Current Data Organizations

A line of work has proven that overall chunking outperforms logically contiguous as a data
organization for multidimensional data, as it is able to alleviate Dimension Dependency [31], i.e.,
the performance of a query is not dependent on the size of the query, but the dimension. ADIOS
employs chunking data layout for multidimensional arrays. However, such a strategy still faces the
concurrency issue shown in the above example. Simply placing data chunks in a round-robin fashion

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 10 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

11

on storage targets does not guarantee the maximum aggregated bandwidth for all of the common
access patterns, potentially limiting the read performance to the bandwidth of very few storage
nodes. To address the aforementioned issues, we have designed a data placement strategy that
utilizes a Space Filling Curve [32] mathematical model to reorganize scientific multidimensional
datasets. We chose the Hilbert curve [33] in particular to leverage its unique properties for clustering
and declustering capabilities as compared to the other types of space filling curves [34]. Instead of
placing data chunks in the round-robin fashion, such a strategy reorders the data chunks along the
Hilbert curve ordering before they are sent to storage. By using this strategy, data from scientific
multidimensional arrays can be distributed in a balanced manner across all storage devices so that
the aggregated bandwidth can be effectively aggregated and exploited for challenging read access
patterns, particularly planar reads. Figure 6 gives an example where data concurrency is improved
3 times on the slow dimension by using a Hilbert space filling curve [33] based placement order
compared to the original round-robin placement strategy. The overall data organization can be either
single-file output or multiple subfile output that ADIOS supports.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Storage
1

Storage
2

Storage
3

Storage
4

0
8
10
7

1
12
14
6

5
13
15
2

4
9
11
3

0
4
8
12

1
5
9
13

2
6
10
14

3
7
11
15

Hilbert Curve Ordering

Linear Ordering

Figure 6. Comparison of Linear Placement and Hilbert Curve Placement Order of 16 Chunks on 4 Storage
Nodes

4.4. I/O Variability

Many current HPC systems have excellent nominal I/O throughput. Consistently achieving these
levels of throughput relies on the assumption that no one else is accessing the file system while
the I/O operation is performed. Our observations with many production codes show that I/O speed
varies significantly from run to run due to interference from other users. As a result, the average
I/O rate is significantly lower and the variance in total I/O time makes it hard to predict job wall
time. The root cause of such a huge variability is that the file system level provides no quality of
service, and resources such as storage targets and network interconnections are essentially shared
by multiple users in a “best-effort” manner. Simultaneous I/O operations can interfere with each,
causing the observed penalties.

We attempt to resolve this problem by providing an adaptive control inside ADIOS. First, ADIOS
uses subfiling to split writing so that writes can happen independently instead of collectively.
By tracking the status of each storage target, a process can make the decision to switch from a
slow storage target to a faster one on-the-fly. In particular, we have implemented an I/O control
plane through which storage target state is periodically exchanged among all processes. The key
advantages of adaptive I/O are twofold. First, the scheme improves overall I/O performance by
actively avoiding congestion hence reducing the overall I/O variability and load imbalance, which
is beneficial to both users and the system as a whole by reducing the amount of time storage targets

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 11 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12

Figure 7. Adaptive I/O versus non-adaptive

are occupied by an application performing I/O. Second, the control framework is very light-weight
and adds no additional complexities to the file system layer. Experimental results shown in Figure
7 are clear: adaptive I/O can effectively improve the write performance by a factor of 500% at 4096
processes. More importantly, the variability indicated by the error bars is much smaller in adaptive
I/O.

4.5. Asynchronous Data Movement

Beyond buffered output, as described in Section 4.1, the next step to further reduce the impact of
I/O on application performance is to introduce asynchronous I/O. One advantage of developing
an I/O framework targeting modern architectures is the availability of innovative low impact
remote memory access methods for the Cray SeaStar2+ and commodity Infiniband networks. Our
experience relying on the file system to provide asynchronous communication has been less than
satisfying [35]. Due to both the complexity of file systems and the difficulty in adding new features,
it was not viable to add asynchronous functionality to center wide file systems. Replacing the file
system with a system like LWFS [13] was not an option either due to the lack of maturity as a
production tool and the reluctance by the machine administrators to introduce an unproven tool into
a key portion of the production environment. Instead, extend the idea of a ‘data buffer’ to include
a remote memory location to stage the data before it is eventually transferred to storage, much
like a cache. This technique, commonly known now as data staging, relies on allocating additional
compute nodes to serve as a transient staging point for output data [36, 37, 38, 39].

By relying on system supoort for remote memory reads, it is possible to schedule data movement
from the staging area based on available network bandwidth and staging area memory. This relieves
the compute process of all responsibilities beyond the initial creation of the buffer. This pull-based
model helps manage the limited memory in the staging area and draws on the model proposed by
Disk-directed I/O [40] and Panda [41]. The application only sends a small “data available” request to
the staging process. These requests are queued and serviced by an RDMA read as memory becomes
available. This server-directed data transfer allows the data to be pulled in over a longer period of
time and requires very little participation from the application. Moreover, this approach requires no

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 12 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

13

Application

 Staging Area

P P

P P

P P

Storage

Application
ApplicationApplication

Data Movement

Figure 8. The flow of data in staging

cross communication between the application processes and requires no synchronization within the
application.

In terms of raw throughput, this approach matches and can even exceed the performance for
bursty data, the maximum acheivable bandwidth of the available system. Consider the throughput
shown in Figure 9. Simply by increasing the number of staging servers, the throughput increases
as long as the clients themselves are not saturated. Moreover, the variability insulation provided by
the buffering in the staging area isolates the application from transient performance failures in the
storage backend.

While asynchronous I/O can insulate the application from transient performance problems,
experiments have shown that application runtime would increase significantly when using
asynchronous data movement. The effect was magnified as the experiment scaled the application and
the output data size. Through extensive experimentation and application analysis, it was discovered
that the background data movement was interfering with intra-application communication. In
particular, the impact of server side remote reads from application memory would have a substantial
negative impact on the performance of collectives.

To address this slowdown, we tested a series of scheduling algorithms that attempted to avoid
interference with application communication. The observation that there are regular communication
and computation phases in most scientific applications afforded ADIOS’ introduction of a dynamic
iterative timeline for application communication. Using this timeline, the server is able to issue data
movement requests only for periods where the application was unlikely to be in a communication
intensive phase.

Different scheduling schemes to reduce interference are tested using the GTC leadership
application on the OLCF Jaguar system. This showed that due to the complexity of predicting
application behavior, a single scheduling method was insufficient for solving the interference
problem. Instead a combination of the perturbation avoidance scheduler in combination with a rate
limiting scheduler provided the least amount of overhead.

The experiment yielded another insight. Even traditional two phase MPI-IO and standard
POSIX fortran writes on Lustre resulted in intereference with collective communication. The write
operation completed when the local system had buffered the data. While the control returned to the
application, Lustre continued to drain the buffer in the background. Thus, the only real method to

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 13 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14

 0

 10

 20

 30

 40

 50

 60

 1 4 8 16 32 64 128

C
um

ul
at

in
g

B
an

dw
id

th
 (

G
B

/s
)

Number of DataStaging nodes

Ingress bandwidth for DataStager

256 clients
512 clients

1024 clients
2048 clients

Figure 9. Data movement throughput when using multiple staging nodes. For maximum throughput we need
to sufficient number of clients

measuring impact of I/O is to compare performing I/O with performing no I/O at all and taking the
difference.

Staging in ADIOS has had a significant impact within the high performance I/O community.
There have been new efforts to address the idea of decoupling application performance from
storage performance from different view points. Glean [42] and Nessie [18] have sought to address
the challenges in scalable data staging on leadership class systems within middleware libraries
such as netCDF. Ouyang et al. [43] have used SSDs to demonstrate the benefits of data staging
for checkpoint performance. Kannan et al. [44] demonstrate similar gains for data analytics with
NVRAM. Similarly, a simplification of the staging concept, burst buffers, have gained traction in
attempting to bridge the gaps between high performance simulations and the storage backend [45].
Utilizing a multi-tier hierarchy of storage that includes SSDs, burst buffers provide a staging area
for bursty output from simulations. The data is absorbed into the burst buffer during the write phase,
and is streamed out to backend storage in between writes.

4.6. Application Complexity

A major challenge for performing I/O research is accurately representing the I/O behavior of
applications. One approach is to instrument a representative application with timing code to
measure I/O performance. This technique assures that the performance measurements are relevant
since they are acquired directly from the application. However, this approach presents a great
deal of unnecessary complexity to an I/O developer since building and running the application
typically requires detailed knowledge that is unrelated to the task of I/O performance measurement.
Gaining the expertise required to build and execute a scientific application for I/O research is time
consuming, and poses a major distraction to the process of I/O research.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 14 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

15

 0

 20

 40

 60

 80

 100

 120

 140

 160

C
D

C
on_1

C
on_4

P
A

P
A

_C
on_1

P
A

_C
on_4

C
D

C
on_1

C
on_4

P
A

P
A

_C
on_1

P
A

_C
on_4

N
o-IO

P
O

S
IX

M
P

I-IO

T
im

e
(s

)

Running time for some GTC subroutines cores

restart
smooth1

Synchronous16 staging nodes4 staging nodes

Figure 10. An example of how different scheduling techniques result in vastly different execution times for
functions in GTC

It is common to measure bulk I/O rates using a tool such as IOR [46] or the NAS parallel
benchmark[47, 48]. This makes the testing process less cumbersome, since it is not necessary to
deal with the complexities of an application. Unfortunately, the results obtained from this type of
benchmark reflect the raw capabilities of the system, and may have very little to do with the actual
performance of the applications that run on the system.

For these reasons, it is much more common to use I/O kernels, such as the FLASH-IO benchmark
routine[49] and the S3D I/O kernel [12], to represent applications. I/O Kernels are codes that
include the I/O routines from a target application but typically have computation and communication
operations removed. This affords quickly testing application I/O behavior without the learning curve
and required dependencies of the full application. The use of I/O kernels still presents several
problems, including (i) They are seldom kept up-to-date with changes to the target application; (ii)
They often retain the same cumbersome build mechanism of the target application; (iii) Different I/O
kernels do not measure performance the same way; (iv) An I/O kernel is not necessarily available
for every application of interest.

I/O skeletal applications extended the notion of I/O kernels by offering a different paradigm.
This is a code that, like an I/O kernel, includes the same set of I/O operations used by an application
while omitting computation and communication. In contrast to I/O kernels, I/O skeletal applications
are automatically generated from the information included in a high-level I/O descriptor. Skeletal
applications share the advantages of I/O kernels while directly addressing the four problems of
I/O kernels identified above as follows: (i) Since skeletal applications are automatically generated,
they are trivial to reconstruct after a change to the application; (ii) All skeletal applications share
the same relatively simple build mechanism; (iii) All skeletal applications share the same flexible

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 15 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

16

measurement techniques, making it easier to perform apples to apples comparisons; (iv) Given its
I/O descriptor, it is a simple process to generate an I/O skeletal application for any application.

To implement the I/O skeletal application approach, the Skel [50] tools support the creation and
execution of I/O skeletal applications. Skel consists of a set of python modules, each of which
performs a specific task. The skel-xml module produces the adios-config file to be used by the
skeletal application. The skel-parameters module creates a default parameter file based on the
configuration file, which is then customized by the user. Modules adios-config and skel-config
interpret the input adios-config file and parameter file, respectively. Based solely on data from
those two input files, the skel-source module generates the source code, in either C or Fortran,
that comprises the skeletal application. The skel-makefile module generates a makefile for compiling
and deploying the skeletal application based on a platform specific template. Finally, the skel-submit
module generates a submission script, also based on a template, suitable for executing the skeletal
application on the target platform.

To enhance the measurements offered by Skel, ADIOS has been extended with an optional
mechanism for providing low-level timing information and is collected on each application process.
The ADIOS I/O methods of interest have been customized with timing instructions using the timing
mechanism. The details of the low level timing operations vary according to the I/O method in use
and have been designed to support arbitrary measurements that may be needed by new I/O methods
added in the future.

This combination of easy-to-use, automatically generated I/O benchmarks along with finer
grained timing of I/O methods has proven to be quite powerful. By allowing application I/O
patterns to be tested quickly without the need to build and run the full application a preliminary
view of the potential improvements to an application’s performance can be determined ahead
of time showing whether additional optimization efforts are warranted. In many cases, the I/O
performance of skeletal applications has closely matched application I/O performance. It is still
useful to validate the performance measured by the skeletal applications by comparing some
measurements with performance of the original application. In one case, a descrepancy when
comparing the performance of a Fortran application with that of a C skeletal application surfaced,
despite both codes using the same underlying I/O library. The problem was eliminated by ensuring
that the skeletal applications are generated using the same language as the target application. In
another instance, a large discrepancy between application and skeletal was due to the measurement
performed in the application encompassed additional computation in addition to the I/O calls of
interest. Finally, variations in measurement technique are often significant, including when barrier
operations are used, and whether a measurement is taken from a single process or reflects a reduction
operation across all processes.

We currently bundle several adios-config files with skel, but are planning to extend this by making
a standard set of full skel benchmarks available on our website, along with performance results from
a variety of machines.

4.7. Interleaving Data Compression and Parallel I/O

A promising solution to the I/O bottleneck is to perform data reduction. Unfortunately, state-of-the-
art I/O middleware solutions currently do not have native support for write compression in a parallel
context, due to the complexity of handling the resultant varying sizes of the compressed data buffers
that requires synchronization between all nodes performing shared-file I/O. Furthermore, data
reduction that sacrifices simulation fidelity, especially at checkpoints, rules out lossy compression
as a generally viable data reduction method. And yet, typical lossless compression techniques are
ineffective on hard-to-compress floating-point data generally produced by such simulations.

Arguably, interleaving lossless compression and parallel I/O is a “secret sauce” for addressing the
I/O bottleneck [51]. Using dynamic, fast identification of highly-compressible bytes to process by a
lossless compression method, such as ISOBAR [52], while asynchronously writing the remaining,
uncompressible bytes to storage with ADIOS can effectively hide the cost of compression and I/O
synchronization behind this transfer, thus rendering parallel write compression viable.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 16 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

17

Such an interleaving method naturally fits into data staging architectures, where various
data transformations can occur while data is “in transit” or in situ, from compute nodes to
disk. Traditionally, staging has been used to compute statistical analyses or perform indexing
operations [53, 38]. With interleaved compression and I/O, however, this functionality can be
augmented by performing compression as an in-situ transfer and storage optimization, as well.

This system exhibits both read and write performance gains proportional to the degree of data
reduction, which ranges as high as 46% on scientific datasets, in addition to reducing the total
amount of data being stored and accessed. Without interleaving, by merely compressing the data
and then writing it to storage, only marginal gains, as high as 6%, could be attained. Because
ISOBAR applies a pre-conditioner to identify those byte columns that are “compressible,” it avoids
wasting CPU cycles trying to compress incompressible bytes in the data. ISOBAR groups the
compressible parts together as small less than 3MB chunks and performs compression only on
those parts. By operating on a lower memory footprint and in an emberrasingly parallel manner,
this technique results in higher energy-efficiency while simultaneously offering high throughput,
reduced data movement, and data reduction that collectively translate to a 1.8− 5.5× reduction in
energy consumption.

4.8. In transit indexing

As data sizes grow, the naive approach of answering user questions by reading and examining each
data record can be prohibitively expensive. An effective way to directly access “interesting” records
is by using an index for the data [54]. In existing data analysis environments, such as the widely used
database management systems, the user data is loaded and written to disk first before the indexes
are created. In this case, the first step of creating an index is to read user data into memory from
disk. Since the read operation is often the most time consuming part of the index creation process,
this reading cost can be avoided by creating indices while the data is being written to disk, i.e., in
transit indexing [55]. This approach has the added advantage that the indices will be available as
soon as the data is available, which can further promote the use of indices for data analyses.

Designing, implementing, and performance measurements for indices have yielded a number of
valuable lessons. The top three lessons are as follows:

Avoiding synchronization: A careful analysis showed that synchronization in the writing step of
index construction increases with the number of processors used. This growth leads the total index
construction time to increase more as a larger number of processors are used. Redesigning the index
storage system to avoid this synchronization is needed in the future.

Index organization: Store the indices with the user data in the same file. This is a convenient
choice, but it does have performance implications. For example, it makes the synchronization more
necessary. One way to avoid this synchronization would be bring indexing operations inside the
ADIOS system itself.

Choosing a moderate number of processors: Using more processors is useful for reducing the
time needed for building indexes and answering queries. However, it is not necessary to choose the
largest number of processors possible. A modest number of processors, say 32, typically gives good
performance.

4.9. Provenance and Access Pattern Mining

ADIOS provenance information, a collection of metadata related with user file access activities
(open, read, write, etc) through ADIOS, is getting more attention. Obtaining detailed data access
information (e.g., accessing variables inside a file or dimensions of variables) is difficult through
a native file system since all of the scientific data file formats (i.e., HDF, NetCDF, and ADIOS
BP) that are frequently used have their own data formats and (hierarchical) structures that are
independent from the native file system. ADIOS offers an ideal platform on which to base the
collection of standard provenance data. Once collected, provenance information can be used in
mining and discovering access patterns or hidden knowledge that can be used for various purposes.
For example, we are currently developing access pattern mining techniques that can be used to build

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 17 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

18

an efficient data pre-fetcher to predict a user’s data requirements and load data before the request in
order to reduce data access latency.

5. FURTHER CHALLENGES

The ADIOS framework successfully solves some of the current challenges facing leadership
applications today. The next generation of Exascale architectures and applications will provide a
new host of challenges. In order to provide a graduated research and development cycle as well
as to aid the reader’s understanding of the next generation, the major research goals below are
partitioned into two timeframes. The first Exascale systems are projected to be deployed around
2018 at leadership computing facilities at Oak Ridge National Laboratory and Argonne National
Laboratory. This is the timeframe for the first set of challenges addressing the needs of leadership
capability applications running on millions of cores and producing petabytes of data per hour.
The next major shift will come in about ten years when Exascale computing will become more
commoditized. The needs will shift from capability computing to mixture of capability and capacity
computing.

For the initial timescale of 5-7 years, the following are some of the significant goals for ADIOS.

1. Data Integrity Integrity is projected to become a significant concern for scientific data as
platforms and architectures transition towards Exascale. Even today, leadership applications
can produce hundreds of terabytes of data per day and are projected to increase by three orders
of magnitude in the next decade [2]. Although some data integrity issues can be managed
through a filesystem layer through checksum and block hashing such as is done by ZFS [56],
integrity without higher level application knowledge will be both expensive and incomplete.
As the number of components involved in computations increases, the probablity of error at
each of the various data generation points also increases. Relying only on the file system to
provide integrity checks does not address data corruption as data moves from the processor
cache to memory to disk. Instead, the higher level mechanism that ADIOS provides today
can be extended to include, alongside data definitions and descriptions, information about
expected ranges of variables. Using the I/O pipeline concept described earlier, ADIOS can
provide higher level integrity protection using semantic knowledge. This can also be used in
combination with file system level integrity checks for additional protection.

2. Fault Detection and Recovery Even more than the issue of data integrity, Exascale will
require a high level of resilience to faults both in the hardware and in the software. The
increased architectural complexity of the many-core approach coupled with the estimated
million-way concurrency will create a significant risk of both transient failures and permanent
faults in the hardware. For an I/O framework to provide application support for Exascale
scientific applications, it must provide both application-level and system-level hooks for fault
detection and recovery. Due to the wide range of faults, the use of application-level knowledge
about data will be a critical mechanism for providing fault resilience. ADIOS is in a unique
position to provide fault detection and recovery for Exascale applications due to the separation
of data description from data layout. Thus, ADIOS can easily incorporate new methods for
extending resilience without requiring substantial refactoring of application code.

3. Automated Performance Tuning As demonstrated by the utility of skel described in
Section 4.6, providing utilities that afford easier performance measurement without dealing
with the complexities of applications will lead to a big improvement in productivity.
As Exascale platforms are introduced, this capability will need to extend to automated
performance tuning in addition to performance capture and analysis. The experience with
skel must be combined with contemporary research in profiling for I/O systems as well as
autotuning frameworks to achieve this goal. Combining this capability with the collection of
power metrics can help optimize data movement from applications to reduce energy use while
improving time to completion.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 18 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

19

4. Managed Data Consistency The last, and perhaps the biggest research goal for ADIOS in
the Exascale age, will be to introduce and create flexible data consistency semantics. The
challenge is not just technical. There is strong inertia among application scientists and system
administrators towards requiring strong consistency semantics. However, as new Exascale
hardware scales towards million-way concurrency, maintaining a tightly consistent view of
data between even a fraction of the available cores will be nearly impossible. Instead of
relying on unviable strong consistency semantics provided by the file system, ADIOS must
attempt to offer a more continous consistency model allowing the developers to choose to
sacrifice performance for tighter consistency or vice versa. Similar to the flexibility offered
on a continuity scale, ADIOS must be able to provide a broad range of consistency for a
variety of data sets. Moreover, global consistency will often be unnecessary for large scale
applications. Instead, regional consistency between neighbors will need to be provided to
allow acceptable performance.

As Exascale becomes more commoditized, the next set of challenges will require techniques for
wide scale data availabilty by combining data centers with cloud storage and even mobile access
to data. New methods for data reduction and flexible compute placement will be needed to deal
with this challenge. Research in this time frame will be to investigate methods for heterogenous
I/O platforms where the cost, power usage and performance characteristics vary across a wide
set of metrics. The complexity of such a system will place significant pressure on higher level
I/O frameworks to improve both usability and maintainability. Providing feedback to the user in a
manner that does not overwhelm will be a crucial goal for I/O research in this time period.

The ADIOS team is currently exploring many techniques for addressing these goals and strives to
provide leadership in this area over the next decade while also providing developers and users with
an easy-to-use, high performance infrastructure for data management.

ACKNOWLEDGMENT

The authors would like to thank Garth Gibson and Rob Ross of Carnegie Mellon University and
Argonne National Laboratory for their extensive early input. Their shared experiences with parallel
I/O helped eliminate many dead ends in the early ADIOS system. We would also like to thank
Sean Ahern, Ilkay Altintas, Micah Beck, John Bent, Luis Chacon, C.S. Chang, Jackie Chen, Hank
Childs, Julian Cummings, Divya Dinkar, Ciprian Docan, Greg Eisenhauer, Stepane Ethier, Ray
Grout, Steve Hodson, Chen Jin, Ricky Kendall, Todd Kordenbrock, Seong-Hoe Ku, Tahsin Kurc,
Sriram Lakshminarasimhan, Wei-keng Liao, Zhihong Lin, Xiaosong Ma, Ken Moreland, D.K.
Panda, Valerio Pascucci, Milo Polte, Dave Pugmire, Joel Saltz, Ramanan Sankaran, Mladen Vouk,
Fang Zheng and Fan Zhang who worked with our team to contribute many useful suggestions.

REFERENCES

1. J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible IO and integration for scientific codes
through the Adaptable IO System (ADIOS),” in CLADE 2008 at HPDC. Boston, Massachusetts: ACM, June
2008. [Online]. Available: http://www.adiosapi.org/uploads/clade110-lofstead.pdf

2. “Scientific discovery at the exascale: Report from the doe ascr 2011 workshop on exascale data management,
analysis and visualization.” [Online]. Available: http://science.energy.gov/∼/media/ascr/pdf/program-documents/
docs/Exascale-ASCR-Analysis.pdf

3. R. Thakur, W. Gropp, and E. Lusk, “On implementing mpi-io portably and with high performance,” in Proceedings
of the sixth workshop on I/O in parallel and distributed systems. ACM, 1999, pp. 23–32.

4. W. Yu, J. Vetter, and H. Oral, “Performance characterization and optimization of parallel I/O on the cray XT,”
IPDPS, pp. 1–11, April 2008.

5. The HDF Group, “Hierarchical data format version 5,” 2000–2010, http://www.hdfgroup.org/HDF5.
6. J. Li et al., “Parallel netCDF: A high-performance scientific I/O interface,” in Proc. SC03. ACM, 2003. [Online].

Available: \url{http://www.mcs.anl.gov/parallel-netcdf}
7. NetCDF, “http://www.unidata.ucar.edu/software/netcdf/.”
8. Unidata, “http://www.hdfgroup.org/projects/netcdf-4/.”
9. J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate, “Plfs:

a checkpoint filesystem for parallel applications,” in Proceedings of the Conference on High Performance

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 19 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

20

Computing Networking, Storage and Analysis, ser. SC ’09. New York, NY, USA: ACM, 2009, pp. 21:1–21:12.
[Online]. Available: http://doi.acm.org/10.1145/1654059.1654081

10. K. Mehta, J. Bent, A. Torres, G. Grider, and E. Gabriel, “A plugin for hdf5 using plfs for improved i/o performance
and semantic analysis,” in High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:. IEEE, 2012, pp. 746–752.

11. S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney, “Grid -based parallel data streaming
implemented for the gyrokinetic toroidal code,” in SC ’03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, 2003, p. 24.

12. J. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. Hawkes, S. Klasky, W. Liao, K. Ma, J. Mellor-Crummey,
N. Podhorszki et al., “Terascale direct numerical simulations of turbulent combustion using S3D,” Computational
Science & Discovery, vol. 2, p. 015001, 2009.

13. R. A. Oldfield, A. B. Maccabe, S. Arunagiri, T. Kordenbrock, R. Riesen, L. Ward, and P. Widener, “Lightweight I/O
for scientific applications,” in Proceedings of the IEEE International Conference on Cluster Computing, Barcelona,
Spain, Sep. 2006. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2006.311853

14. R. Tchoua, H. Abbasi, S. Klasky, Q. Liu, N. Podhorszki, D. Pugmire, Y. Tian, and M. Wolf, “Collaborative
monitoring and visualization of hpc data,” in 2012 International Symposium on Collaborative Technologies and
Systems (CTS), may 2012.

15. J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield, M. Wolf, and Q. Liu, “Six degrees of
scientific data: reading patterns for extreme scale science IO,” in Proceedings of the 20th international symposium
on High performance distributed computing, ser. HPDC ’11. New York, NY, USA: ACM, 2011, pp. 49–60.
[Online]. Available: http://doi.acm.org/10.1145/1996130.1996139

16. J. H. Chen et al., “Terascale direct numerical simulations of turbulent combustion using S3D,” Comp. Sci. & Disc.,
vol. 2, no. 1, p. 015001 (31pp), 2009. [Online]. Available: http://stacks.iop.org/1749-4699/2/015001

17. W. Yu and J. Vetter, “ParColl: Partitioned collective I/O on the cray XT,” Parallel Processing, International
Conference on, vol. 0, pp. 562–569, 2008.

18. J. Lofstead, R. Oldfiend, T. Kordenbrock, and C. Reiss, “Extending scalability of collective I/O through Nessie and
staging,” in The Petascale Data Storage Workshop at Supercomputing, Seattle, WA, November 2011.

19. R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system interconnect,” in Proceedings of the 18th Annual
Symposium on High Performance Interconnects (HOTI). Mountain View, CA: IEEE Computer Society Press,
August 2010, pp. 83–87.

20. J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, metadata rich IO methods for portable high
performance IO,” in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, may
2009, pp. 1 –10.

21. W. X. Wang and et al, “Gyro-kinetic simulation of global turbulent transport properties in Tokamak experiments,”
Physics of Plasmas, vol. 13, no. 9, p. 092505, 2006. [Online]. Available: http://link.aip.org/link/?PHP/13/092505/1

22. C. S. Chang, S. Klasky, J. Cummings, R. Samtaney, A. Shoshani, L. Sugiyama, D. Keyes, S. Ku, G. Park, S. Parker,
N. Podhorszki, H. Strauss, H. Abbasi, M. Adams, R. Barreto, G. Bateman, K. Bennett, Y. Chen, E. D. Azevedo,
C. Docan, S. Ethier, E. Feibush, L. Greengard, T. Hahm, F. Hinton, C. Jin, A. Khan, A. Kritz, P. Krsti, T. Lao,
W. Lee, Z. Lin, J. Lofstead, P. Mouallem, M. Nagappan, A. Pankin, M. Parashar, M. Pindzola, C. Reinhold,
D. Schultz, K. Schwan, D. Silver, A. Sim, D. Stotler, M. Vouk, M. Wolf, H. Weitzner, P. Worley, Y. Xiao, E. Yoon,
and D. Zorin, “Toward a first-principles integrated simulation of Tokamak edge plasmas - art. no. 012042,” Scidac
2008: Scientific Discovery through Advanced Computing, vol. 125, pp. 12 042–12 042, 2008.

23. Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely, D. K. Panda, A. Chourasia,
J. Levesque, S. M. Day, and P. Maechling, “Scalable earthquake simulation on petascale supercomputers,” in
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–20. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.45

24. L. Chacón, “A Non-Staggered, Conservative, ∇ṡB →= 0, Finite-Volume Scheme for 3D Implicit Extended
Magnetohydrodynamics in Curvilinear Geometries,” Computer Physics Communications, vol. 163, pp. 143–171,
Nov. 2004.

25. F. Pretorius, “Evolution of Binary Black Hole Spacetimes,” Phys. Rev. Lett., vol. 95, p. 121101, 2005.
26. O. E. B. Messer, S. W. Bruenn, J. M. Blondin, W. R. Hix, A. Mezzacappa, and C. J. Dirk, “Petascale Supernova

Simulation with CHIMERA,” Journal of Physics Conference Series, vol. 78, no. 1, pp. 012 049–+, Jul. 2007.
27. R. W. Grout, A. Gruber, C. Yoo, and J. Chen, “Direct numerical simulation of flame stabilization downstream of a

transverse fuel jet in cross-flow,” P. Combust. Inst., 2010, in press.
28. H. Childs, “Architectural challenges and solutions for petascale postprocessing,” J. Phys., vol. 78, no. 012012,

2007.
29. C. H. Q. Ding and Y. He, “Data organization and I/O in a parallel ocean circulation model,” in Proc. SC99. Society

Press, 1999.
30. “SDSC Gordon: Data-Intensive Supercomputing,” http://gordon.sdsc.edu.
31. S. Sarawagi and M. Stonebraker, “Efficient organization of large multidimensional arrays,” in Proc. 10th Int. Conf.

on Data Eng., Houston, TX, 1994, pp. 328–336.
32. H. Sagan and J. Holbrook, Space Filling Curves. New York, NY, USA: Springer-Verlag, 1994.
33. D. Hilbert, “Ueber die stetige abbildung einer line auf ein flächenstück,” Math. Ann., vol. 38, pp. 459–460, 1891.
34. B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz, “Analysis of the clustering properties of the hilbert space-filling

curve,” IEEE T. Knowl. Data En., vol. 13, no. 1, pp. 124–141, 2001.
35. J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation of leading HPC I/O performance using a scientific-

application derived benchmark,” in proceedings of the 2007 conference on supercomputing, SC07, 2007.
36. C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction and coordination framework for coupled

simulation workflows,” in IEEE International Symposium on High Performance Distributed Computing, 2010, pp.
25–36.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 20 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

21

37. ——, “Enabling high speed asynchronous data extraction and transfer using dart,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 9, pp. 1181 – 1204, March 2010.

38. H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng, “DataStager: Scalable data
staging services for petascale applications,” in Proceedings of the 18th International Symposium on
High Performance Distributed Computing, ser. HPDC ’09. ACM, 2009, pp. 39–48. [Online]. Available:
http://doi.acm.org/10.1145/1551609.1551618

39. H. Abbasi, J. F. Lofstead, F. Zheng, K. Schwan, M. Wolf, and S. Klasky, “Extending i/o through high performance
data services,” in CLUSTER. IEEE, 2009, pp. 1–10.

40. D. Kotz, “Disk-directed I/O for MIMD multiprocessors,” ACM Transactions onComputer Systems, vol. 15, no. 1,
pp. 41–74, Feb. 1997. [Online]. Available: http://www.cs.dartmouth.edu/∼dfk/papers/kotz:jdiskdir.ps.gz

41. K. E. Seamons and M. Winslett, “Physical schemas for large multidimensional arrays in scientific computing
applications,” in Proceedings of the 7th International Working Conference on Scientific and Statistical Database
Management, Sep. 1994, pp. 218–227. [Online]. Available: http://bunny.cs.uiuc.edu/CADR/pubs/ssdbm.ps

42. V. Vishwanath, M. Hereld, and M. E. Papka, “Toward simulation-time data analysis and i/o acceleration on
leadership-class systems,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on. IEEE,
2011, pp. 9–14.

43. X. Ouyang, S. Marcarelli, and D. K. Panda, “Enhancing checkpoint performance with staging io and ssd,” in Storage
Network Architecture and Parallel I/Os (SNAPI), 2010 International Workshop on. IEEE, 2010, pp. 13–20.

44. S. Kannan, A. Gavrilovska, K. Schwan, D. Milojicic, and V. Talwar, “Using active nvram for i/o staging,” in
Proceedings of the 2nd international workshop on Petascal data analytics: challenges and opportunities. ACM,
2011, pp. 15–22.

45. N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn, “On the role of burst
buffers in leadership-class storage systems,” in Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th
Symposium on. IEEE, 2012, pp. 1–11.

46. “IOR HPC Benchmark,” http://sourceforge.net/projects/ior-sio/.
47. D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and M. Yarrow, “The NAS parallel benchmarks

2.0,” Technical Report NAS-95-020, NASA Ames Research Center, Tech. Rep., 1995.
48. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,

R. Schreiber et al., “The NAS parallel benchmarks summary and preliminary results,” in Supercomputing, 1991.
Supercomputing’91. Proceedings of the 1991 ACM/IEEE Conference on. IEEE, 1991, pp. 158–165.

49. “FLASH I/O benchmark routine – parallel HDF5,” http://www.ucolick.org/∼zingale/flash benchmark io/.
50. J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S.-H. Ku, Q. Liu, X. Ma, M. Parashar,

N. Podhorszki, K. Schwan, and M. Wolf, “Skel: generative software for producing skeletal I/O applications,” in
the proceedings of D3science, 2011.

51. E. Schendel, S. Pendse, J. Jenkins, D. Boyuka II, Z. Gong, S. Lakshminarasimhan, Q. Liu, H. Kolla, J. Chen,
S. Klasky, R. Ross, and N. Samatova, “ISOBAR hybrid compression-I/O interleaving for large-scale parallel I/O
optimization,” in Proceedings of the 21st international symposium on High performance distributed computing, ser.
HPDC ’12. New York, NY, USA: ACM, 2012.

52. E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.S. Chang, S-H. Ku, S. Ethier, S. Klasky, R. Latham, R. Ross, and N.
F. Samatova, “ISOBAR preconditioner for effective and high-throughput lossless data compression,” in IEEE 28th
International Conference on Data Engineering (ICDE), 2012.

53. H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just in time: Adding value to the IO
pipelines of high performance applications with JITStaging,” in Proceedings of the 20th International Symposium
on High Performance Distributed Computing, ser. HPDC ’11. ACM, 2011, pp. 27–36. [Online]. Available:
http://doi.acm.org/10.1145/1996130.1996137

54. K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann,
W. Koegler, J. Lauret, J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer, Prabhat, O. Rubel,
A. Shoshani, A. Sim, K. Stockinger, G. Weber, and W.-M. Zhang, “FastBit: Interactively searching massive data,”
in SciDAC, 2009.

55. J. Kim, H. Abbasi, L. Chacón, C. Docan, S. Klasky, Q. Liu, N. Podhorszki, A. Shoshani, and K. Wu, “Parallel in
situ indexing for data-intensive computing,” in LDAV. IEEE, 2011, pp. 65–72.

56. Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “End-to-end data integrity
for file systems: a zfs case study,” in Proceedings of the 8th USENIX conference on File and storage
technologies, ser. FAST’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855511.1855514

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 21 of 21

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

