
Insights for Exascale IO APIs from
Building a Petascale IO API

Jay Lofstead
Sandia National Laboratories

gflofst@sandia.gov

Robert Ross
Argonne National Laboratory

rross@mcs.anl.gov

ABSTRACT
Near the dawn of the petascale era, IO libraries had reached
a stability in their function and data layout with only incre-
mental changes being incorporated. The shift in technology,
particularly the scale of parallel file systems and the number
of compute processes, prompted revisiting best practices for
optimal IO performance.

Among other efforts like PLFS, the project that led to
ADIOS, the ADaptable IO System, was motivated by both
the shift in technology and the historical requirement, for op-
timal IO performance, to change how simulations performed
IO depending on the platform. To solve both issues, the
ADIOS team, along with consultation with other leading IO
experts, sought to build a new IO platform based on the
assumptions inherent in the petascale hardware platforms.

This paper helps inform the design of future IO platforms
with a discussion of lessons learned as part of the process of
designing and building ADIOS.

1. INTRODUCTION
IO libraries have a long history. Each was developed by

a community to offer an abstraction of utility to a range of
applications and offer interoperability for different users of
the library. As these libraries mature, they develop a level
of portability for written data and generalize the API calls
for writing and reading data. The most successful of these
have become standards used beyond their original commu-
nity. Each of these offers different features and trade-offs.
As an upside, third-party tools have a broad understand-
ing and support for data stored using these formats. An
unfortunate downside is the lack of detailed control to opti-
mize how the data is organized. One painful example of the
lengths taken by users to work around the file format can be
seen in how the Chombo AMR framework [1] used HDF-5 at
the time. Rather than just storing multidimensional arrays
of structs or multiple arrays, the data was genericized into
a list of values that had a known mapping. To get a value,
one had to decode how many values were stored per element
and the sizes, and then calculate which values to read. This
approach achieved the desired performance and was seen as

Copyright 2013 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
SC13 November 17-21, 2013, Denver, CO, USA
ACM 978-1-4503-2378-9/13/11
http://dx.doi.org/10.1145/2503210.2503238

a preferable option to building a custom data layout and
dealing with getting support by third-party tools. These
experiences help shape future IO API designs.

ADIOS is the latest of these libraries and has a similar
history. It was designed and built originally based on sci-
ence applications that use Oak Ridge’s HPC platforms with
some connection to the National Center for Computational
Science group. Two particular applications, the Chimera
supernova simulation [2] and the GTC fusion simulation [3],
were the base cases used to test the designs on the Oak
Ridge hardware. In order to see the motivation for creating
ADIOS, it helps to understand what the other main options
for performing HPC IO were at the time. There were three
primary IO stack options for HPC applications that are still
in wide use today: NetCDF, PnetCDF, and HDF-5.

NetCDF version 3 [4] and the CDF-3 file format were de-
veloped to support the climate community and have gained
support from some other applications. The data layout con-
sists of a header block containing all the metadata about
the file contents immediately followed by the data with each
variable stored in an inorder, contiguous chunk. The big
limitation of NetCDF version 3 and older is that it is a se-
rial IO library. The development of parallel storage arrays
and larger numbers of compute processes and large aggre-
gate data sizes prompted the need to move to a parallel IO
library to achieve better performance. As a stop-gap mea-
sure, NetCDF 3.6.0 introduced a 64-bit offset, but it was
still limited to a serial API.

PnetCDF [5] and the CDF-5 file format offered a shift to
full support for 64-bit and parallel IO while maintaining as
much as possible backwards compatibility with the CDF-
3 file format. While PnetCDF is successful and still used,
the NetCDF community ultimately opted to switch to using
HDF-5 underneath the NetCDF API for their go-forward
platform. In spite of the NetCDF community’s choice to
pursue a different direction, a level of interoperability ex-
ists between NetCDF version 4 using HDF-5 underneath,
CDF-3, and the CDF-5 file format. The tools available for
manipulating and accessing these files can work on the var-
ious formats.

The HDF-5 [6] API and file format were developed at
the National Center for Supercomputing Applications and
offers a more modular structure than CDF by using a block-
based structure in the file. Instead of the strictly linear
format, HDF-5 offers linking to other blocks in order to ex-
pand or contract the metadata entries and place the vari-
ables in some less predictable order. However, it still by
default stores the data for each variable in a single, con-

tiguous, inorder chunk. An option allows storing the data
in multiple chunks, but it requires additional configuration
and decisions that few users make. HDF-5 has become the
general standard for many HPC applications as well as other
industries. NetCDF version 4, as well as other libraries such
as SILO [7], uses HDF-5 to define and implement the map-
ping of data to files. This frees the designers to focus on
building an API that suits their applications rather than
worrying about the data layout. Moreover, HDF-5 files are
broadly compatibile with third-party tools, including plug-
ins such as automatic data compression.

The major IO innovation that drove these IO APIs for par-
allel performance was the introduction of two-phase IO [8].
Collectively sending data to a single file in parallel afforded
taking advantage of all the storage devices simultaneously.
To aid in performance, the first phase of two-phase IO is
to rearrange data so that the chunks being written to disk
are larger. This achieves fewer, larger writes reducing disk
head movement resulting in a net benefit. The key idea
is to trade disk head or platter movement for interconnect
communication. The net result, hopefully, will be better IO
performance.

Two-phase IO offers benefits even today for data sets
meeting particular characteristics. For example, it has been
shown to achieve as much as 50% of peak write perfor-
mance [9] at 64K processes. The tradeoff of disk seek time
and rotational latency for data rearrangement does not nec-
essarily scale as well when the number of processes and
amount of data that must be exchanged explode. One could
do better by using tricks as Chombo did, but doing so re-
quires careful profiling and adjustment of how the data is
organized and the IO performed knowing the context of the
IO API and the disk layout.

In that environment of 2005, a project started trying to
improve the IO performance for the GTC fusion simulation.
In 2007, the effort restarted with a different approach that
proved effective. ADIOS was designed under the assumption
of a massively parallel storage array and 3-D domain decom-
positions. It had a foot in the older world as well by con-
sidering the requirements of the 2-D Chimera code available
at the time that used a large number of smaller variables.
ADIOS focused initially on writing performance demonstrat-
ing saturating the IO system for a variety of workloads [10].
Later, the “write optimized” format was validated to not pe-
nalize reading. In almost all cases, it yielded better reading
performance for representative reading patterns [11,12].

Today, the technology is shifting again. NAND-based
Flash storage’s rapid decline in price and increase in per-
formance is threatening the dominance of disk. In the near
future, other technologies such as phase change memory will
change this environment further. Not only will the nature
of the storage devices change, but also the number of levels
and location of each level physically will change. The energy
envelope limitations for exascale platforms are also putting
pressure on changing how IO is performed. The IO APIs
need to consider these and other technology shifts in order
to better meet the needs of their customers.

This paper presents lessons for developers of next gen-
eration IO APIs inspired by the experiences in developing
the current generation of IO APIs as well as the lessons
leveraged that made the current generation a success. For
example, we note two example lessons that have been stan-
dard techniques for a decade or more and will continue to

be relevant into the future. First, buffering will continue to
be important. While shifting storage device technology may
eliminate the need to work in blocks or in streams for best
efficiency, interconnects are still most efficient when moving
larger blocks of data. Second, adaptable IO stacks separat-
ing the IO API from the implementation, such as the use
of MPI-IO or other pluggable transports underneath HDF-5
and PnetCDF and the transport layer for ADIOS, will have
continued importance. The shifting landscape and special-
ized hardware on each new platform require flexibility in how
the IO operations are implemented with minimal impact on
the application source code. The rise of online workflows
that use in-compute-area storage between tasks rather than
disks can also be supported with a custom transport layer.

Beyond these two fundamental examples, this paper ex-
plores six additional lessons learned as part of developing
ADIOS. The lessons are divided into three categories: hard-
ware/infrastructure, API and middleware-related issues, and
application support. Each lesson contains suggestions as to
how it may be considered when designing new IO stacks for
exascale platforms. The paper concludes with some broad
thoughts about the lessons presented.

Major ADIOS Contributors

The original core ADIOS team consisted of, in al-
phabetical order: Hasan Abbasi, Scott Klasky, Jay Lof-
stead, Karsten Schwan, and Matthew Wolf. This team
determined what to build to suit our and our customers’
needs. Extensive early input from Robert Ross from
Argonne National Laboratory and Garth Gibson from
Carnegie Mellon University strongly informed the de-
cisions made and eliminated many potential dead-ends
yielding a far better system than could have been done
without their input.

Other contributors over the years include Sean Ah-
ern, Ilkay Altintas, Micah Beck, John Bent, Luis Cha-
con, C.S. Chang, Jackie Chen, Hank Childs, Jong
Youl Choi, Alok Choudhary, Julian Cummings, Di-
vya Dinkar, Ciprian Docan, Greg Eisenhauer, Stepane
Ethier, Ray Grout, Steve Hodson, Chen Jin, Ricky
Kendall, Todd Kordenbrock, Seong-Hoe Ku, Tahsin
Kurc, Sriram Lakshminarasimhan, Wei-keng Liao, Zhi-
hong Lin, Qing Liu, Jeremy Logan, Xiaosong Ma, Bron-
son Messer, Anthony Mezzacappa, Ken Moreland, Ron
Oldfield, D.K. Panda, Manish Parashar, Valerio Pas-
cucci, Norbert Podhorszki, Milo Polte, Dave Pugmire,
Joel Saltz, Nagiza Samatova, Ramanan Sankaran, Arie
Shoshani, Yuan Tian, Roselyne Tchoua, Mladen Vouk,
Kesheng Wu, Weikuan Yu, Fang Zheng and Fan Zhang.
We thank them for their contributions that have helped
refine ADIOS.

2. LESSONS LEARNED
By examining what was learned during the development

and subsequent use of ADIOS, we hope to inform the work
for IO researchers as they move toward supporting exascale
platforms. The lessons are categorized into three groups.
First, we present hardware and infrastructure related lessons.
These focus on the characteristics of the platforms and how
they impact IO. Second are the API level and middleware
lessons. These focus on how choices of optimizations per-

formed affect IO performance. Third, we present lessons
related to application support. These focus on how to lever-
age the IO stack in order to support more efficient use of
the data. We discuss what each lesson means and the mo-
tivations for the lesson as experienced from our work and
present a summary of recommendations for future IO work.

Some ADIOS terminology needs to be defined in order to
make reading the following lessons clearer:

Group
A collection of variables and attributes that represent a
single output action within an application. For exam-
ple,“restart”,“diagnostics”, and“analysis”are common
group names.

Process Group
The output for a particular group by a particular pro-
cess. While this is generally for a single process, noth-
ing inherent in the design requires that this represent
a single process. For situations like aggregation trees
that combine the data from several processes into a
single output block, a single process group would be
written to storage representing all the compute pro-
cesses aggregated to the single IO process.

Transport Method
A technique for taking data given by the API and per-
forming some action to process the data. For example,
“MPI”, “adaptive”, “POSIX”, and “NULL” use stan-
dard MPI-IO independent IO, an adaptive IO tech-
nique [13], standard POSIX IO, or ignore the request
for output respectively.

2.1 Hardware and Infrastructure Lessons
The hardware and infrastructure lessons focus on the im-

portance of considering the underlying system hardware and
system-level software for making a high performance IO stack.

2.1.1 The Storage Stack Matters–A Lot
Initial development of ADIOS was heavily influenced by

Lustre and the architecture and usage of Jaguar at Oak
Ridge. We were aware of the performance of the intercon-
nect, the interference problems due to competing use of the
interconnect and the file system, and the issues of small IO
operations on a HDD-based file system. Lustre’s ability to
select the number of parallel storage targets and the size
of each stripe was heavily used to get optimal performance
on this platform. In particular, the design of the ADIOS
BP file format is built around the ability to set the stripe
size in Lustre. The parallel writing performance is organized
around manipulating the settings to use as much of the file
system as possible. The metadata services bottleneck due to
the networking load on the metadata server is also managed.
The introduction of the asynchronous IO hints help manage
the interconnect limitations. All these decisions were made
to work more effectively with the underlying hardware en-
vironment. A current technology shift, particularly with
regard to the storage array, demands revisiting some of the
base assumptions ADIOS made and informs the kinds of is-
sues to consider about the hardware when designing a new
IO API.

The deployment of Gordon at the San Diego Supercom-
puting Center ushered in the era of solid state storage arrays
for HPC. While flash-based devices have limitations that will

ultimately limit widespread deployment for storage arrays,
the cost/performance ratio gap between these devices and
hard disk drives has shrunk dramatically in even the last two
years. Factoring in the performance and energy use, the dif-
ferences shrink further. Currently, the price for capacity
advantage has shrunk to about 4× [14, 15] for the highest
performance models [16, 17]. Previously, HDDs were higher
performance than SSDs for streaming operations. SSDs can
now reach 392 MB/sec write performance, and HDDs are
topping out at 192 MB/sec. For latency, solid state devices
have a fixed overhead for accessing any block of data in
the device in random order. Performance has shifted to a
measure of IOPs (IO operations per second). The IOPs are
largely limited by the physical characteristics of the media,
just like HDDs.

While flash is currently popular, the relatively low perfor-
mance compared with that of technologies like phase change
memory and the limited write endurance point to an end of
life for this technology. Companies like Anobit, purchased
by Apple in December 2011, have been working hard to
improve the reliability of cheaper MLC-based flash devices
further driving prices down and reliability up for the short
term. Other efforts to address durability by incorporating
rejuvenating operations are also promising [18]. Such ad-
vancements will make flash capable of bridging the gap un-
til PCM or other technologies can take over. As these other
technologies develop, the attributes governing their perfor-
mance will be similar to those of flash, but with different
performance and durability levels.

Even without using SSDs, paying careful attention to the
hardware can lead to performance advantages. Zest [19]
offers a “burst buffer” to improve the IO performance. SSD-
based burst buffers can offer even better performance [20]
between the compute area and the storage array for an HPC
machine. Thus greatly improving the perceived performance
of IO. Recently offered hardware by Panasas [21] incorpo-
rates this technique into a commercial storage array to im-
prove IO performance. Others, such as Starboard Storage
Systems and Tegile, offer somewhat similar technology.

The other concern for future technology is that given the
high performance of newer solid state storage devices, they
likely will be connected using faster busses, such as the mem-
ory bus or PCI-express. The performance and cost may
even reach a point where current DRAM technology is sup-
planted by persistent storage, not just for data protection,
but to avoid the energy cost of the memory refresh opera-
tion. Add this to a multilevel centralized storage array and
potentially node-local storage outside the normal address
space and the picture for data storage has shifted radically.
The additional wrinkle is that at least three or four differ-
ent performance characteristics must be considered. First is
the direct byte-addressable model of DRAM and technolo-
gies like PCM. Second is the block-based, but fixed latency,
for flash devices. The last characteristics concern disk and
tape: different latencies and head movement and streaming,
linear access.

The real considerations for IO performance will ultimately
be the IO bandwidth to the storage array and the degree of
parallelism that can be achieved. Any new platforms will
have to more carefully allocate resources for how to specify
a storage array and the connectivity to the HPC resource.
Achieving a balance of storage bandwidth to interconnect
connection to the storage array will be key.

While all modern HPC parallel file systems purport to
provide a POSIX [22] interface, different parallel file sys-
tems each expose a different level of control to the end user
and offer a different level of automation in an effort to en-
able the best performance. Lustre [23] and PVFS [24] are
at one extreme where the end user can control most pa-
rameters, such as the stripe size, stripe count, stripe width,
and storage target selection. Others, such as GPFS [25] and
Panasas [26], consider these decisions too important to al-
low the end user to manipulate directly. Instead, the file
system manages these parameters in creative ways to offer
the scalable performance characteristics they exhibit. For
example, Panasas dynamically allocates stripes in order to
improve the writing performance based on the number of
clients writing simultaneously.

Unlike previous standard IO APIs that focused on the
data model in the abstract, ADIOS chose to create a data
model adapted to the data distributions of parallel file sys-
tems. Further, ADIOS manages the file system parameters
to control how data is placed on the parallel storage array,
when possible. With Lustre in widespread use in the DOE
supercomputing centers, ADIOS is able to demonstrate the
advantage of this approach on many machines. For example,
ADIOS maximizes the number of storage targets and adjusts
the stripe width to avoid any false sharing caused by a mul-
tiple processes writing to different parts of the same stripe,
all without any user intervention.

The BP format developed alongside ADIOS is designed
to support this sort of operation. The log-based format af-
fords placing the output of each process at an arbitrary off-
set in the file that corresponds to the beginning of a stripe.
When used in conjunction with Lustre, two main advan-
tages are gained. First, the metadata server hit of spanning
to a new stripe is avoided, completely avoiding creating un-
needed locks. Second, by maximizing the number of storage
targets at file creation time, the maximal parallelization is
achieved immediately, rather than adaptively as is done by
some parallel file systems. There is one exception in ADIOS.
When the three index blocks are written at the end of the
file, they are written by a single process in a contiguous
chunk without regard to splitting each to a different stor-
age target. The older IO API’s focus on the data model
did not allow taking advantage of these parameters directly.
There is some ability to manipulate them, but not to the
extent achieved by the more flexible BP format. The ad-
vantage to this approach of manipulating the file system
parameters directly is well documented in various ADIOS
papers [10,12,13].

A side-effect of having more control over data placement
on the storage array is the ability to organize the data blocks
to afford the best average-case reading performance. The
older IO APIs, again, did not offer any real ability to control
these limiting the performance advantages. ADIOS has been
following the earlier work by the visualization community
and others [27–31] to control the organization of data in
order to enhance reading performance [32].

Research efforts like active storage [33–35] are effective
only if one has knowledge about the data at the file system
level. This would require some downward interface to inform
the lower layers of the IO stack additional information to
support these kinds of operations. If a middleware layer
had knowledge of the data sizes and distribution across the
compute processes, it could manage the movement rather

than being pushed data.
This lesson really motivates a bigger discussion about the

semantics of storage. All production parallel file systems
offer a POSIX interface and enforce the semantics this re-
quires. Many applications do not need all these semantics
and hence suffer performance penalties. Efforts like the
Lightweight File Systems Project [36] have explored how
to assemble a parallel file system making different consis-
tency semantics optional, for example. Offering this level
of flexibility at the file system layer, with the resulting rip-
ples upward, can improve IO performance considerably for
particular workloads.

Where exactly to divide layers in the IO stack and what
interfaces and functionality to expose in both directions are
currently unknown. The shifting technology environment
has complicated the picture prompting additional work. Ex-
posing knowledge about both the data and the system char-
acteristics, including negotiation of data organization and
placement of operators along the data path, has proven to
be an effective approach. Multiple active research projects
are continuing to explore how to construct these IO stacks
in order to most effectively service the needs of end users.

For now, the ADIOS transport method mechanism has
proven effective. New techniques can be tested within the
ADIOS framework by using production codes already tuned
and configured for ADIOS with no source code changes.
This flexibility, combined with the option of optimizing trans-
port methods for particular platforms and situations, makes
the ADIOS approach a significant improvement over the
fixed IO APIs available today. Validating the ADIOS ap-
proach, HDF-5 has begun to offer a similar facility to incor-
porate a new implementation for how the actual processing
of data is performed. The rich API and strict semantics
offered by HDF-5 make this more challenging, but offer an
excellent path toward the kind of flexibility that will likely
be required for exascale systems.

Summary and Recommendations.
Older IO APIs have focused on building the standard data

model, with performance a second consideration. ADIOS
took a largely opposite approach of focusing on gaining the
best parallel writing performance, with more calculation work
spent locating the data when it is needed. For exascale
platforms, with a complex, multilayered storage hierarchy in
which each layer requires different optimization techniques
and data layouts, neither of these approaches will be op-
timal. Introduction of tiers such as node-local persistent
storage, data staging, burst buffers [20], and storage devices
with different performance characteristics will have to be
considered. A holistic approach considering how to gener-
ate the best use of parallel resources for data distribution
at each level of the hierarchy with a data-layout-aware mi-
gration scheme will be required in order to achieve the best
overall performance. As data migrates among the various
tiers, any decision made to optimize the data layout must
be preserved and propagated, potentially requiring data re-
organization, in order to ensure continued performance.

The techniques that hide the time spent performing IO
can still help address IO performance and are an important
part of moving forward. Where these techniques just use
asynchronous data movement to hide overheads, re-evaluating
how they approach the IO itself is highly encouraged. By
aggregating data into fewer locations, the data movement

overhead can be reduced to achieve the canonical data or-
dering in storage. While in some cases, such as small data
sets, this approach still makes sense and where a potentially
radically different data distribution may be used, consider-
ing the sources of latency in the storage system for both
writing and reading is critical. Only when the attributes of
these new hardware innovations are taken into account in
the APIs will optimal performance be achieved. Incorporat-
ing a technique like ParColl [37] that creates appropriately
sized canonical blocks in a relatively independent way would
improve the performance further.

2.1.2 Asynchronous IO is Getting Harder
Early MPP machines had extensive interconnects that af-

forded efficient use for simultaneous interprocess commu-
nication and asynchronous operations. More recently, the
number of interconnect links compared with compute nodes
has scaled back relatively to cut down on costs. The down-
side to this shift is that the proposed approach of using
asynchronous IO just at the file system layer to hide the
cost of moving data to storage for exascale platforms is un-
workable. The DataTap [38] project was motivated by the
empirical observation that asynchronous IO for the GTC
fusion code on Jaguar at Oak Ridge actually increased the
wall-clock runtime 30% beyond what an equivalent run us-
ing synchronous IO would take. The key problem identi-
fied was a global data exchange phase immediately after the
IO phase. By moving the data blocks to storage during
that data exchange, the contention on the interconnect dra-
matically slowed the exchange leading to the performance
penalty. This includes removing the time spent performing
IO synchronously from the wall clock time. The result was
surprising and led to considerable additional work for man-
aging data movement asynchronously. The forecast for in-
terconnect bandwidth for future platforms is no better [39].

The older standard IO APIs were exclusively synchronous.
ADIOS also is generally synchronous. Since ADIOS was be-
ing created at the same time as this discovery about asyn-
chronous IO, hints were incorporated to help schedule the
asynchronous data movement. By offering a begin/end pair
around computationally intensive (and communication light)
blocks and a pacing indicator, ADIOS enabled scheduling
the asynchronous data movement around the general com-
munication phases of the application while pacing the data
movement to help ensure minimal blocking due to unfinished
data transfers. When selecting an asynchronous IO trans-
port method for a group in the XML file, one can annotate
this mapping with the pacing information.

The DataTap system and the follow-on work have focused
on how to effectively leverage asynchronous IO to data stag-
ing areas with the observation of interference effects that IO-
related data movement may have with application-related
communication tasks. By incorporating the features de-
scribed above with DataTap, asynchronous IO has become
viable in spite of the reduced capacity of the interconnects.

Summary and Recommendations.
With the diminishing capacity of interconnects compared

with the connected nodes, techniques like asynchronous IO
are problematic. Current efforts by the MPI Forum and Lus-
tre to incorporate asynchronous IO into their systems can
have different levels of effectiveness. By incorporating asyn-
chronous IO into MPI, interprocess communication can be

scheduled with higher priority than the bulk data movement
operations. Lustre’s efforts to rely on asynchronous IO for
performance, without the integration with the interprocess
messaging system, is likely to repeat the observations that
motivated DataTap.

For asynchronous IO to be a viable way to address the
time spent performing IO, integration with whatever in-
terprocess communication mechanism deployed is critical.
Even taking this into account is not sufficient, however.
With multiple applications running on the machine at the
same time, coordination among all the running processes pri-
oritizing interprocess communication over bulk data move-
ment operations is necessary. Without this additional level
of coordination, achieving consistent performance will not
be possible without owning either the entire machine for a
single application or at least a relatively isolated partition
of the machine.

Using asynchronous IO to aggregate operations that occur
successively can avoid some of these problems by delaying
performing an operation with the expectation that it can
be combined with a subsequent operation reducing the total
overhead [40].

Machines like the Blue Gene, with multiple networks that
separate storage traffic from interprocess communication,
can succeed with asynchronous IO with only minimal spe-
cial considerations. All other platforms require more global
thought to figure out how to move data blocks across the
shared interconnect without introducing unacceptably large
latencies for interprocess communication.

2.2 API and Middleware Lessons
Increasing efforts are being made in IO middleware to

work around limitations of the underlying storage system.
ADIOS has enabled this sort of experimentation through
the use of the transport methods. These lessons describe
the opportunities and challenges faced with using middle-
ware to enhance IO.

2.2.1 Balance Independence and Coordination
Two-phase IO coordinates globally to rearrange data. This

communication imposes significant overhead as the process
count grows. The general ADIOS approach of every pro-
cess operating indpendently introduces excessive metadata
replication and may create too many small data chunks to
offer good reading performance. A balance that offers some
coordination, but not too much must be sought.

Avoid Global Coordination.
For the nearly 20 years since the development of collective

IO, or more properly techniques like two-phase IO [8] and
data sieving [41], global coordination has been promoted as
offering the best overall end-to-end IO performance possible.
For writing, the reduction in the number of small writes
by reorganizing the data into contiguous chunks using the
machine interconnect greatly reduces the amount of time
taken pushing data to disk. For reading, the rearranged
data offered generally fewer reads and more predictable read
times.

The concept of reducing the number of operations to the
storage system by combining adjacent IOs or using data siev-
ing to perform fewer, larger IO operations is sound. How-
ever, keeping the amount of data movement low has proven
difficult when applying the two phase approach, especially

in the context of access patterns that exhibit a great degree
of data interleaving between processes [37, 42, 43]. Many
efforts have been undertaken to optimize the write perfor-
mance for collective IO [44–46]. While they all address par-
ticular scenarios to improve this performance, they do not
address the underlying communication overhead. Attempts
have also been made to split the output in order to reduce
the number of participants with each file improving the scal-
ability [47,48].

Figure 1: Independent Block Write Performance

ADIOS achieves the goal of fewer, larger IOs with an en-
tirely different approach similar to log-structured storage
research [49–53]. Each process writes completely indepen-
dently from another rather than relying on reorganizing data
for a contiguous layout. This approach yields an across-
the-board advantage in writing performance [10]. Figure 1
shows the write performance for the GTC [3] fusion sim-
ulation with weak scaling for different IO techniques. The
POSIX technique illustrated is how ADIOS performs the BP
output.

Figure 2: Independent Block Read Performance

This layout generally results in far better reading perfor-
mance. Figure 2 shows the reading performance for a 3-D
domain decomposition written by 7K or 16K processes and
read again by the process count indicated. The log format
used by the BP format shows dramatically better perfor-
mance.

While ADIOS does operate as independently as possible,

there are two synchronization points during file output gen-
erally. First is during the file open when the open calls are
partially serialized and the data offsets are collected and dis-
triuted (supported by the adios group size call). Second is
collecting the local index pieces to the root for writing to
the file. All other operations are performed locally only.

The BP format was created to support this level of inde-
pendence. The log-based format allows each process to own
a portion of the file and write all of its local data into that
block. While this requires knowing how large the local data
will be, in practice this has not been an issue. Adding data
to the file is nearly trivial. One just reads the index blocks
based on offsets written as the last bytes of the file, writes
at any point overwriting the index pieces or not, and then
writes new index pieces including the new process groups.

The overall file layout is illustrated in Figure 3. It is a
log-based format with the index blocks at the end.

Figure 3: BP Overall File Layout

At a more detailed level the actual layout is far more in-
teresting. Each process group is organized as illustrated in
Figure 4.

Figure 4: BP Process Group Layout

Each process group consists of the length of this process
group, whether or not this process group was written by us-
ing Fortran. By storing this flag at this level, ADIOS can
support a single file being used by mixed languages. Next is
the name of the process group, the coordination var mem-
ber id (no longer used), the timestamp variable name, and
the timestamp value. The final three blocks are replicas of
the metadata from the process groups, variables, and at-
tributes, respectively. Each of these blocks is self-contained
and only contains replicated data, eliminating any depen-
dence on these blocks for the process group blocks to be
valid.

PLFS [54] similarly takes a log-based approach, but the
concept is applied in the context of providing a POSIX data
mode. Instead of being along the path between the applica-
tion and storage or requiring a new file format, it is a thin
layer on top of the file system that hides how a file is actu-
ally written to the file system. Instead of allowing a process
to write anywhere, it consolidates all the IO requests from a
single process and stores them together. This enables mak-
ing any IO API independent. On reads, it uses an index
to find the requested data. This technique shows excellent
performance, but it is too low level to address the whole end-
to-end IO performance puzzle. For example, it is too late
to intercept the data rearrangement phase that can take so
much time at scale [37]. Recently, PLFS has introduced an
MPI-IO ADIO layer that hooks in at the collective IO layer,
avoiding the data rearrangement phase. This will work well
for applications that use MPI-IO. There is also a user-level
API that can help address this limitation, but it requires
application code change.

Avoid Too Much Independence.

ADIOS demonstrates a nearly extreme level of indepen-
dence that has helped achieve much of the performance it is
capable of achieving. However, a limit to this has been both
observed and projected.

Figure 5: Performance Penalty for Small Process
Groups

For example, during reading for small variables, the log-
based format can be consistently slower than the compara-
ble standardized data model, as illustrated in Figure 5 and
expored in detail elsewhere [12]. The figure shows the per-
formance for reading all of a single variable created from a
2-D domain decomposition with an aggregate size smaller
than the memory available to a single process. It is written
by 7K or 16K processes using NetCDF4 and ADIOS with a
BP format. The NetCDF4 format, by aggregating the tiny
pieces into a single whole, is able to avoid numerous small
reads and writes, yielding better performance for reading
operations.

The key feature that exposes this problem is when a vari-
able is small enough to be fully stored in the memory of a
single process. In this case, gathering before writing and
scattering after reading is a superior approach. ADIOS is
exploring ways to introduce a level of aggregation in order
to achieve a middle ground to address this performance gap.
The root cause of this gap is the process group structure in
the BP file. Since each process group generally represents
a single process, the number of locations within a file that
must be accessed in order to retrieve a slice of data grows
as the computation process count grows. Use of aggregation
trees to mitigate the explosion in process groups helps, but
is not a full solution. The small data case demonstrates that
having special processing for special cases may be required
in order to maintain the best performance.

A second problem directly related to the number of pro-
cess groups is the impact on the index. Currently, the index
blocks contain entries for each item in every process group.
The log-based structure of the index blocks makes searching
these blocks linear with respect to the number of process
groups. While the structure currently offers tremendous ad-
vantages over searching the actual data sets for data char-
acteristics, the independent entries in the index blocks will
eventually fail simply because of the number of entries.

Single Points of Contention Are Bad.
Two examples of the issues with single points of contention

can be observed. The first concerns internal causes, such as
using a single client process to perform an action on behalf of
all other processes. NetCDF’s serial processing model was
seen as a scalability problem, prompting the move to the
NetCDF 4 architecture incorporating collective IO for per-
formance. In spite of the more recent development, ADIOS
suffers from a similar single-process bottleneck. The creation
of the index blocks at the end of the BP file is done with a
single process by collecting and collating all the pieces from
all the processes into the three blocks. Unless the index is
structured and the process is written to support distributed
reading/writing/searching, it is limited to a single process
and how much memory it has. ADIOS suffers from this
single-process limitation for all the index processing. A re-
lated problem is that the index blocks are more of a linear
list, prompting the inclusion of an index to the index. For
example, an R-Tree [55] would be useful for finding which
process groups contain the data of interest during a read
operation. Currently, ADIOS has to scan the entire index
to find all the entries that contain relevant data. Other
research groups are investigating alternative approaches to
address this problem.

The second place is external to the application and IO
stack. For the current version of Lustre, the limitation of
a single metadata server exhibits this sort of single point of
contention. Lustre ends up serializing all metadata server re-
quests in order to ensure consistency. One can help manage
this load by deliberately slowing the client request rate, al-
though such an approach is counterintuitive. ADIOS demon-
strated [10] that with even partial client-side serialization of
the open calls can reduce the total time for the open to hap-
pen. As explanation, consider the result of all the processes
attempting to contact the metadata server simultaneously.
It is similar to a distributed-denial-of-service attack. By
reducing the rate, the server can process the requests with
fewer interruptions to handle incoming connections for addi-
tional requests. These sorts of external factors are harder to
identify, but can lead to undiagnosed performance problems.

Summary and Recommendations.
ADIOS demonstrated that independence scales far bet-

ter than using global coordination. PLFS has demonstrated
that many of the advantages of independence can be achieved
at a low level, but with limits. Any future IO stack should
strongly consider how to offer a maximum level of indepen-
dence. However, it can be taken too far, as illustrated below.

The number of independent pieces (process groups) gen-
erated can be a penalty for reading, as well as causing an
explosion in space for the index blocks and a corresponding
linear increase in time to find items because they have no
higher-level structure. The log-based structure of the index
blocks is not perfect for all cases. Even when the metadata
is very small per entry, the number of entries will eventu-
ally hamper any searching. Different structures that offer a
balance between the flexibility of log-based formats and co-
ordinated, more structured formats should be investigated.

Additionally, consider the “corner cases” that ADIOS has
demonstrably much worse performance and consider the meta-
data explosion. HDF-5 particularly is known to have special
code for small data processing that uses a single process and
messaging rather than parallel reading operations. These

sorts of optimizations involve little additional code but can
enhance the robustness of any offering. As long as they are
dynamic based on current system characteristics, consistent
high performance can be achieved for reading, writing, and
metadata operations.

Single points of contention both internal to the applica-
tion and external in other system components, such as the
parallel file system, can lead to performance bottlenecks. IO
stack developers should consider both the client side and the
system components in order to avoid these bottlenecks. As
we move toward exascale, even the seemingly most benign
aggregation to a single process must be removed or avoided.

2.2.2 Externalizing Complexity Can Be Good
(or Surface Simplicity = Flexibility)

One complaint users have against the older IO APIs is
that they are too complicated and take too much code to do
something simple. While from a purely software engineer-
ing standpoint these APIs are optimal because they support
compile time over runtime checks, end users do not always
agree it is the best approach. ADIOS explores the other end
of the spectrum by minimizing the surface complexity in an
effort to afford greater flexibility. HDF-5 has been moving
in this direction as well. Newer releases have offered simpler
calls to achieve the same functionality. With a richly com-
plex API, the semantics of what each call actually does is
more fixed.

One motivating example prompting the move to simplicity
can be seen in the older HDF-5 API versions. For example,
explicit opening and closing of the different group levels to
write data for a variable were required. If the semantics of
data were to change, requiring moving data from one group-
ing to another, source code changes are required. In the
worst case, insertion or deletion of calls might be needed in
order to change the navigation through the hierarchy.

The introduction of the companion XML file with ADIOS
tested violating strong software engineering for the sake of
user convenience and flexibility. The XML file component
of ADIOS pulled out all the API calls necessary to configure
the metadata about the file into a separate location. The
resulting API is only slightly more complex than POSIX.
In spite of the separation causing potential undetected in-
compatibilities and runtime errors, this approach has proved
popular with most ADIOS users. As a side effect, additional
advantages and challenges were revealed.

The semantics of the POSIX IO API consisting of an
open/write/close sequence represents the same model used
throughout Linux, with features like ttys and pipes. ADIOS’
use of the XML file seeks to achieve the same level of flex-
ibility afforded by the POSIX IO model throughout Linux.
ADIOS uses the flexibility to change from writing to disk
synchronously to writing asynchronously to writing to a
staging area to inserting into an onine workflow. All these
possibilities are there because the API is as simple as possi-
ble, without any semantics expressed in the code indicating
how the IO should be performed. Because all the metadata
for the variables is stored in the XML file, moving a vari-
able from one place in the logical hierarchy of the output is
also trivial. If the variable name is unique, no changes are
required other than to the XML. If not, then if the scripts
to generate the API calls are used, then regenerating the
calls and a recompile are all that is necessary. Otherwise,
changing one line of code in the application should be all

that is required.
Although placing the metadata about variables into the

XML file has introduced flexibility, it does impose some re-
strictions. As described above, a group in ADIOS repre-
sents an output operation. Since it is defined external to
the source code, it needs to be a complete superset of the
possible members of the output for every time the output
is performed. In general, this is not a problem. A useful
feature of this is the ability to tell at a quick glance what
are the members of a particular output without isolating
and parsing the source code. The inclusion of the utilities in
ADIOS that generate the API calls to write, the code nec-
essary for writing can be completely exported to the XML
file. However, for applications like S3D [56] that have 50 or
more possible variables with only a subset being evaluated
for any particular run, the group definition can be needlessly
long and have entries for unused variables limiting use of the
code generation scripts.

The XML file also enables adding fixed-value attributes to
the output without modifying the source code. Some appli-
cation scientists who carefully evaluate the application with
each change prior to any production runs have decided that
using an additional path in an added library is unlikely to
affect the calculations. This affords adding these attributes
once the code has been validated, generating richly anno-
tated output and avoiding revalidation when changing only
these annotations.

The most important flexibility introduced by the XML
file is the selection of how to manage the data for an out-
put operation. Three different modes are allowed. First,
one can change from a to-storage mechanism to a to-staging
approach with only a single entry change in the XML file.
Second, one can completely turn off a set of output by using
the NULL transport method. Third, one can transparently
multiplex the output via multiple transport methods. This
affords sending data to a persistence mechanism while also
forwarding it into an online workflow system. Should the
workflow system fail, the persistent copy can be used in-
stead to avoid data loss.

Ultimately, ADIOS introduced an in-code API capable of
replacing the XML file. While this API extension is lit-
tle more than exposing the routines used when parsing the
XML file, it did cause some loss of functionality enjoyed by
using the XML file approach, but with the benefit of the
compile-time checks lost by the introduction of the XML
file. Moreover, it removed the requirement of providing a
secondary configuration file for the application to operate
properly.

Summary and Recommendations.
ADIOS’ popularity with early users was driven by their

frustration with the complexity of other options. Each user
had a story about how much code was required to accomplish
seemingly simple IO tasks. The surface simplicity offered by
ADIOS ended up affording flexibility that was not possible
or extremely difficult with existing approaches.

While older IO APIs have used environment variables and
similar mechanisms to afford external control to binary ex-
ecutables, ADIOS explored that space further by exporting
all the metadata components into an XML file. This ap-
proach has been popular with most users, particularly when
the advantages gained are understood. One acn use tools
to manage much of the loss of compile time checking, mak-

ing the approach worth serious consideration for future IO
stacks.

Making interfaces simple and separating concerns into dif-
ferent components, such as an API and the XML file, offer
opportunities not just to simplify the user experience, but
also to introduce new options, such as changing how the IO
is performed or adding attributes. Future efforts should con-
sider how to maintain simplicity with a nod to modularity
so that similar advantages can be achieved.

2.3 Application Support Lessons
With the increasingly large data volumes generated by

simulations, reducing the amount of effort searching through
raw data is important for reducing the time to insignt. By
leveraging the parallel distribution of data prior to writing,
embarassingly parallel annotations can greatly reduce the
time spent searching the data for relevant portions.

2.3.1 Rich Metadata Enhances Productivity
With data volumes increasing and the cost of moving and

scanning data becoming untennable, alternatives should be
investigated to aid in data selection. Two categories of meta-
data should be considered as key features of any new IO
stack.

First, for example, one common task performed during
analysis for simulation data is determining what the min-
imum and maximum values are for a variable across the
entire domain for each iteration for a data set that has been
written to disk. This information can be useful for determin-
ing when an energy level or temperature reaches a particular
threshold making a particular set of data more “interesting”.
For older IO APIs, determining the min and max values for
a variable requires a full data scan or a noncore extension,
such as FastBit [57]. ADIOS incorporates a concept, called
data characteristics [10], to support rapid determination of
various properties of these massive data sets.

ADIOS’ data characteristics are based on the notion that
embarrassingly parallel calculations can be used to radically
reduce the time spent in determining a data property across
a data set. This concept is hardly surprising or new. The
only real innovation was incorporating it as a fundamen-
tal feature of the BP file format and having it automati-
cally generated as part of the normal ADIOS functioning.
The initial implementation of data characteristics focused
on simple min/max values. Other unpublished work has
evaluated the arithmetic mean and other values. The only
real limitation is mathematical: Is it possible to partially
calculate a value locally and then use that partial calcula-
tion to generate a global value across the entire data set?
Applied mathematians have been addressing this question
as part of parallelization of algorithms for decades.

The ADIOS index blocks are another level of rich meta-
data that aids productivity. They incorporate not just the
standard name, type, and location metadata, but also the
data characteristics for each part of each variable in a process
group. These replicate the data from each process group en-
try to aid in reading performance by affording fewer, larger
reads and obtaining larger amounts of data to process. They
also afford finishing the partial calculations that the data
characteristics represent.

The older standard data files are fully generic and have
support for data items that represent both variables and
attributes. It is possible to build the same sort of extended

features ADIOS has as “standard” by using these formats,
but a standard approach has not been adopted by all users
of the API, thereby limiting interoperability.

Summary and Recommendations.
Data sizes and the performance bottlenecks of storage in-

terfaces demand that higher-level indexing of scientific data
be incorporated into any new IO stack. Further, incorporat-
ing a system similar to the data characteristics developed as
part of ADIOS affords partial calculations of data properties
to accelerate not just finding blocks of data within the stor-
age hierarchy, but also identifying what data is “interesting”
and should be read for further analysis. The end-user pro-
ductivity enhancement and the reduced impact on the file
system is tremendous. For example, the data characteristics
in ADIOS enables determining the min and max values for a
file containing tens of terabytes in nearly the same constant
time as a file of a few gigabytes. The time scales as a func-
tion of the number of process groups rather than the amount
of data. Further, one must consider the costs of global and
independent operation and storage as outlined above when
developing these features.

2.3.2 Lightly Analyze Data in the IO Path
As was the case with asynchronous IO, managing data

movement across the storage interface is important. Asyn-
chronous IO attempts to hide the latency by overlapping the
time with other operations. In this case, we seek to avoid
the latency entirely by performing some of the lighter-weight
data analysis tasks before the data ever crosses the storage
interface.

Data staging, or more generally using a small amount of
additional resources to accelerate IO in some fashion, has
been in use for many years. This was first posited in 1996 to
help with imaging for a seismic modeling application [58]. In
that work, by adding 10% more nodes, a 30% performance
improvement was achieved. It hosted FFT operations to
process the data and used asynchronous IO to overlap the
IO with computation.

More recently, the DataTap [59] project also incorporated
data staging functionality as a way to process the data be-
ing moved. Other efforts by Cray [60] and IBM for Blue
Gene [61] have also explored the same space. The Nessie [62]
project has been used for this purpose as well [43].

More richly, the PreDatA [63] project has demonstrated
that hosting functionality along this IO path has different
performance characteristics depending on where the opera-
tion is placed and the kind of operation. It also shows that
using these sorts of operations in the IO path can still im-
prove the total wall-clock time while massaging data into
a more desirable form when it reaches disk, even when ac-
counting for the additional resources used for the data stag-
ing services.

The DataSpaces [64] project has focused on using data
staging as a way to perform code coupling operations. Specif-
ically, it uses asynchronous IO to move data into a staging
area and then have a different application retrieve some por-
tion of that data as needed.

A recent effort called Glean [65] at Argonne is a start
toward both accelerating IO performance and integrating
functionality, such as analysis routines, at the right place
transparently. It is similar to PreDatA but extends the lo-
cation of operations to potentially beyond the current ma-

chine.

Summary and Recommendations.
For most of the cited examples, the staging system host-

ing the analysis tasks is separate from both the IO API and
the storage system. PreDatA and DataTap they take ad-
vantage of the transport method mechanism of ADIOS to
change how IO is performed. Instead of having data go to
storage, a custom transport method moves the data into the
staging area for further processing. HDF is incorporating
similar functionality by abstracting the internal implemen-
tation of how data is written. Glean is incorporating this
functionality as a key component in a high-performance IO
stack.

Any new efforts for IO stacks, as demonstrated by these
examples, should incorporate this functionality. Ideally, new
platforms will offer dedicated nodes that offer more RAM or
other features that aid these kinds of operations.

3. CONCLUSIONS AND FUTURE WORK
Exascale platforms are projected to have more restricted

IO performance compared with that of today’s machines.
This continues a trend seen with the development of petas-
cale systems from earlier terascale systems. The IO APIs
developed prior to ADIOS aimed for a standard data model
first and chose to rely on other layers in the IO stack to man-
age some of the complexity in achieving optimal IO perfor-
mance. ADIOS was developed acknowledging the achieve-
ments and limitations of these earlier IO APIs and achieves
higher performance for the petascale environment. ADIOS
benefited from the lessons learned from these efforts. The
end result is a system that exhibits higher performance for
many common IO workloads. By reflecting on the outcomes
of the ADIOS project along with those earlier lessons, we
can better understand how to architect future IO stacks.

Ultimately, knowledge of all aspects of the storage hier-
archy, management of data organization based on size, con-
tents, and the storage mechanism, and annotation of data
to aid in selection will make an exascale IO stack effective.
Ensuring that limited coordination is performed in order to
avoid bottlenecks, but not at the ultimate expense of per-
formance, is also critical.

We hope that the lessons presented here that led to ADIOS,
as well as those learned as part of developing ADIOS, will
inform future exascale IO stack development.

4. ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000. This work
as also supported by the U.S. Department of Energy under
contract DE-AC02-06CH11357.

5. REFERENCES
[1] M. Christen, N. Keen, T. Ligocki, L. Oliker, J. Shalf,

B. Van Straalen, and S. Williams, “Automatic

thread-level parallelization in the chombo amr
library,” Ernest Orlando Lawrence Berkeley National
Laboratory, Berkeley, CA (US), Tech. Rep., 2011.

[2] O. E. B. Messer, S. W. Bruenn, J. M. Blondin, W. R.
Hix, A. Mezzacappa, and C. J. Dirk, “Petascale
supernova simulation with CHIMERA,” Journal of
Physics Conference Series, vol. 78, no. 1, pp.
012 049–+, Jul. 2007.

[3] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and
R. B. White, “Turbulent transport reduction by zonal
flows: Massively parallel simulations,” Science, vol.
281, no. 5384, pp. 1835–1837, September 1998.

[4] R. Rew and G. Davis, “Netcdf: an interface for
scientific data access,” Computer Graphics and
Applications, IEEE, vol. 10, no. 4, pp. 76–82, 1990.

[5] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale, “Parallel netcdf: A high-performance
scientific i/o interface,” in Supercomputing, 2003
ACM/IEEE Conference, 2003, pp. 39–39.

[6] “HDF5 home page.” http://hdf.ncsa.uiuc.edu/HDF5/.

[7] SILO,
“https://wci.llnl.gov/codes/visit/3rd party/silo.book.pdf.”

[8] J. M. del Rosario, R. Bordawekar, and A. Choudhary,
“Improved parallel I/O via a two-phase run-time
access strategy,” in Proceedings of the IPPS ’93
Workshop on Input/Output in Parallel Computer
Systems, Newport Beach, CA, 1993, pp. 56–70, also
published in Computer Architecture News 21(5),
December 1993, pages 31–38.

[9] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms,
and W. Allcock, “I/O performance challenges at
leadership scale,” in Proceedings ofSC2009: High
Performance Networking and Computing, Portland,
OR, November 2009.

[10] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan,
“Adaptable, metadata rich IO methods for portable
high performance IO,” in Proceedings of the
International Parallel and Distributed Processing
Symposium, Rome, Italy, 2009.

[11] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. A.
Klasky, Q. Liu, M. Parashar, N. Podhorszki,
K. Schwan, M. Wingate, and M. Wolf, “...and eat it
too: high read performance in write-optimized hpc i/o
middleware file formats,” in Proceedings of the 4th
Annual Workshop on Petascale Data Storage, ser.
PDSW ’09. New York, NY, USA: ACM, 2009, pp.
21–25. [Online]. Available:
http://doi.acm.org/10.1145/1713072.1713079

[12] J. Lofstead, M. Polte, G. Gibson, S. A. Klasky,
K. Schwan, R. Oldfield, and M. Wolf, “Six degrees of
scientific data: Reading patters for extreme scale IO,”
in Proceedings of the Twentieth IEEE International
Symposium on High Performance Distributed
Computing. San Jose, CA: IEEE Computer Society
Press, Jun. 2011.

[13] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,
T. Kordenbrock, K. Schwan, and M. Wolf, “Managing
variability in the IO performance of petascale storage
systems,” in Proceedings ofSC2010: High Performance
Networking and Computing, Nov. 2010.

[14] N. P. P. WD1000DHTZ,

http://doi.acm.org/10.1145/1713072.1713079

“http://www.newegg.com/product/product.aspx?
item=n82e16822236243&tpk=wd1000dhtz,”
September 2012, wD1000DHTZ, 1 TB, 203.10
MB/sec, $289.99 at newegg.

[15] N. P. P. MZ-7PC12B/WW,
“http://www.newegg.com/product/product.aspx?
item=n82e16820147163,” September 2012, samsung
SSD 830, 128 GB, 392.10 MB/sec, $99.99 at newegg
[256 MB @ 226.99, 512 MB @ 549.99].

[16] T. H. H. C. S. Writes,
“http://www.tomshardware.com/charts/hdd-charts-
2012/-25-iometer-2006.07.27-streaming-
writes,2929.html,” September 2012, wD1000DHTZ, 1
TB, 203.10 MB/sec, $289.99 at newegg.

[17] T. H. S. C. S. Writes,
“http://www.tomshardware.com/charts/ssd-charts-
2011/as-ssd-sequential-write,2783.html,” September
2012, samsung SSD 830, 128 GB, 392.10 MB/sec,
$99.99 at newegg.

[18] S. Sharwood, “Flash memory made immortal by fiery
heat: Macronix’s ‘thermal annealing’ process extends
ssd life from 10k to 100m read/write cycles.”

[19] P. Nowoczynski, N. Stone, J. Yanovich, and
J. Sommerfield, “Zest checkpoint storage system for
large supercomputers,” in Petascale Data Storage
Workshop, 2008. PDSW ’08. 3rd, nov. 2008, pp. 1 –5.

[20] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B.
Ross, G. Grider, A. Crume, and C. Maltzahn, “On the
role of burst buffers in leadership-class storage
systems,” in MSST. IEEE, 2012, pp. 1–11.

[21] P. A. . P. Storage,
“http://www.panasas.com/activestor-14,” September
2012, 20 HDDs + 10 SSDs for 1600 MB/sec.

[22] IEEE, 2004 (ISO/IEC) [IEEE/ANSI Std 1003.1, 2004
Edition] Information Technology — Portable
Operating System Interface (POSIX R©) — Part 1:
System Application: Program Interface (API) [C
Language]. New York, NY USA: IEEE, 2004.

[23] P. J. Braam, “The lustre storage architecture,” Cluster
File Systems Inc. Architecture, design, and manual for
Lustre, Nov. 2002,
http://www.lustre.org/docs/lustre.pdf. [Online].
Available: http://www.lustre.org/docs/lustre.pdf

[24] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur, “PVFS: A parallel file system for linux
clusters,” in Proceedings of the 4th Annual Linux
Showcase and Conference. Atlanta, GA: USENIX
Association, Oct. 2000, pp. 317–327. [Online].
Available:
http://www.mcs.anl.gov/˜thakur/papers/pvfs.ps

[25] F. Schmuck and R. Haskin, “GPFS: A shared-disk file
system for large computing clusters,” in Proceedings of
the USENIX FAST ’02Conference on File and Storage
Technologies. Monterey, CA: USENIX Association,
Jan. 2002, pp. 231–244. [Online]. Available:
http://www.usenix.org/publications/library/
proceedings/fast02/schmuck.html

[26] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou,
“Scalable performance of the panasas parallel file
system,” in Proceedings of the USENIX
FAST’08Conference on File and Storage Technologies,

M. Baker and E. Riedel, Eds. USENIX, Feb. 2008,
pp. 17–33.

[27] V. Pascucci and R. J. Frank, “Global static indexing
for real-time exploration of very large regular grids,”
in Proc. SC01, Nov. 2001, pp. 45–45.

[28] H. V. Jagadish, “Linear clustering of objects with
multiple attributes,” SIGMOD Rec., vol. 19, no. 2, pp.
332–342, 1990.

[29] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz,
“Analysis of the clustering properties of the hilbert
space-filling curve,” IEEE T. Knowl. Data En.,
vol. 13, no. 1, pp. 124–141, 2001.

[30] Y. Hu, A. Cox, and W. Zwaenepoel, “Improving
fine-grained irregular shared-memory benchmarks by
data reordering,” in Proc. SC00, Nov. 2000, pp. 33 –
33.

[31] S. Kuo, M. Winslett, Y. Cho, J. Lee, and Y. Chen,
“Efficient input and output for scientific simulations,”
in In Proceedings of I/O in Parallel and Distributed
Systems (IOPADS). ACM Press, 1999, pp. 33–44.

[32] Y. Tian, S. Klasky, H. Abbasi, J. F. Lofstead, R. W.
Grout, N. Podhorszki, Q. Liu, Y. Wang, and W. Yu,
“Edo: Improving read performance for scientific
applications through elastic data organization,” in
CLUSTER. IEEE, 2011, pp. 93–102.

[33] E. J. Felix, K. Fox, K. Regimbal, and J. Nieplocha,
“Active storage processing in a parallel file system,” in
Proceedings of the LCI Internaltional Conference on
Linux Clusters, Chapel Hill, North Carolina, Apr.
2005. [Online]. Available: http://www.
linuxclustersinstitute.org/Linux-HPC-Revolution/
Archive/PDF05/18-Felix E.pdf

[34] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle,
“Active disks for large-scale data processing,” IEEE
Computer, vol. 34, no. 6, pp. 68–74, Jun. 2001.
[Online]. Available: http:
//www.computer.org/computer/co2001/r6068abs.htm

[35] R. Wickremesinghe, J. S. Chase, and J. S. Vitter,
“Distributed computing with load-managed active
storage,” in Proceedings of the Eleventh IEEE
International Symposium on High Performance
Distributed Computing. Edinburgh, Scotland: IEEE
Computer Society Press, 2002, pp. 24–34.

[36] R. A. Oldfield, A. B. Maccabe, S. Arunagiri,
T. Kordenbrock, R. Riesen, L. Ward, and P. Widener,
“Lightweight I/O for scientific applications,” in
Proceedings of the IEEE International Conference on
Cluster Computing, Barcelona, Spain, Sep. 2006.
[Online]. Available: http://doi.ieeecomputersociety.
org/10.1109/CLUSTR.2006.311853

[37] W. Yu and J. Vetter, “ParColl: Partitioned collective
I/O on the cray XT,” Parallel Processing,
International Conference on, vol. 0, pp. 562–569, 2008.

[38] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky,
K. Schwan, and M. Wolf, “Extending i/o through high
performance data services,” in Cluster Computing.
Luoisiana, LA: IEEE International, September 2009.

[39] J. Shalf, “Exascale computing technology challenges.”

[40] K. Gao, W. keng Liao, A. Choudhary, R. Ross, and
R. Latham, “Combining I/O operations for multiple
array variables in parallel netCDF,” in Proceedings of
2009 Workshop on Interfaces and Architectures for

http://www.lustre.org/docs/lustre.pdf
http://www.mcs.anl.gov/~thakur/papers/pvfs.ps
http://www.usenix.org/publications/library/proceedings/fast02/schmuck.html
http://www.usenix.org/publications/library/proceedings/fast02/schmuck.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/PDF05/18-Felix_E.pdf
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/PDF05/18-Felix_E.pdf
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/PDF05/18-Felix_E.pdf
http://www.computer.org/computer/co2001/r6068abs.htm
http://www.computer.org/computer/co2001/r6068abs.htm
http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2006.311853
http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2006.311853

Scientific Data Storage, New Orleans, LA, Sep. 2009.

[41] R. Thakur, W. Gropp, and E. Lusk, “Optimizing
noncontiguous accesses in MPI-IO,” Parallel
Computing, vol. 28, no. 1, pp. 83–105, Jan. 2002.
[Online]. Available: http://www.mcs.anl.gov/˜thakur/
papers/mpi-io-noncontig.ps

[42] J. Lofstead, R. Oldfiend, T. Kordenbrock, and
C. Reiss, “Extending scalability of collective io
through nessie and staging,” in The Petascale Data
Storage Workshop at Supercomputing, Seattle, WA,
November 2011.

[43] J. Lofstead, R. Oldfield, and T. Kordenbrock,
“Unconventional data staging using nssi,” in In
Proceedings of IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, Delft, The
Netherlands, May 2013.

[44] R. Bordawekar, J. M. del Rosario, and A. Choudhary,
“Design and evaluation of primitives for parallel I/O,”
in Proceedings ofSupercomputing ’93. Portland, OR:
IEEE Computer Society Press, 1993, pp. 452–461.
[Online]. Available: ftp:
//erc.cat.syr.edu/ece/choudhary/PASSION/sc93.ps.Z

[45] J. Carretero, J. No, S.-S. Park, A. Choudhary, and
P. Chen, “Compassion: a parallel I/O runtime system
including chunking and compression for irregular
applications,” in Proceedings of the International
Conference on High-Performance Computing and
Networking, Apr. 1998, pp. 668–677.

[46] R. Thakur and A. Choudhary, “An Extended
Two-Phase Method for Accessing Sections of
Out-of-Core Arrays,” Scientific Programming, vol. 5,
no. 4, pp. 301–317, Winter 1996. [Online]. Available:
http://www.mcs.anl.gov/˜thakur/papers/ext2ph.ps

[47] W. Yu, J. S. Vetter, S. Canon, and S. Jiang,
“Exploiting Lustre file joining for effective collective
IO,” in Proceedings of the SeventhIEEE/ACM
International Symposium on Cluster Computing and
the Grid. IEEE Computer Society, May 2007, pp.
267–274.

[48] K. Gao, W. keng Liao, A. Nisar, A. Choudhary,
R. Ross, and R. Latham, “Using subfiling to improve
programming flexibility and performance of parallel
shared-file I/O,” in Proc. ICPP 09, Vienna, Austria,
Sep. 2009.

[49] T. Blackwell, J. Harris, and M. Seltzer, “Heuristic
cleaning algorithms in log-structured file systems,” in
Proceedings of the 1995 USENIX Technical
Conference, Jan. 1995, pp. 277–288. [Online].
Available: http://das-www.harvard.edu/users/
students/Trevor Blackwell/Usenix95.html

[50] B. M. Broom and R. Cohen, “Acacia: A distributed,
parallel file system for the CAP-II,” in Proceedings of
the First Fujitsu-ANU CAP Workshop, Nov. 1990.

[51] S. Carson and S. Setia, “Optimal write batch size in
log-structured file systems,” in Proceedings of the
USENIX File Systems Workshop, May 1992, pp.
79–91.

[52] F. Douglis and J. Ousterhout, “Log-structured file
systems,” in Proceedings ofIEEE Compcon, Spring
1989, pp. 124–129, san Francisco, CA.

[53] M. Rosenblum and J. K. Ousterhout, “The design and
implementation of a log-structured file system,” in

Proceedings of the ThirteenthACM Symposium on
Operating Systems Principles. Pacific Grove, CA:
ACM Press, 1991, pp. 1–15.

[54] J. Bent, G. A. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate,
“Plfs: a checkpoint filesystem for parallel
applications,” in SC. ACM, 2009.

[55] A. Guttman, “R-trees: a dynamic index structure for
spatial searching,” SIGMOD Rec., vol. 14, no. 2, pp.
47–57, Jun. 1984. [Online]. Available:
http://doi.acm.org/10.1145/971697.602266

[56] J. H. Chen, A. Choudhary, B. de Supinski,
M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao,
K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo, “Terascale
direct numerical simulations of turbulent combustion
using S3D,” Computational Science & Discovery,
vol. 2, no. 1, p. 015001 (31pp), 2009. [Online].
Available: http://stacks.iop.org/1749-4699/2/015001

[57] E. O”Neil, P. O”Neil, and K. Wu, “Bitmap index
design choices and their performance implications,” in
Database Engineering and Applications Symposium,
2007. IDEAS 2007. 11th International, 2007, pp.
72–84.

[58] R. A. Oldfield, D. E. Womble, and C. C. Ober,
“Efficient parallel I/O in seismic imaging,” The
International Journal of High Performance Computing
Applications, vol. 12, no. 3, pp. 333–344, Fall 1998.
[Online]. Available: ftp://ftp.cs.dartmouth.edu/pub/
raoldfi/salvo/salvoIO.ps.gz

[59] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng, “Datastager: scalable data
staging services for petascale applications,” in HPDC,
D. Kranzlmüller, A. Bode, H.-G. Hegering,
H. Casanova, and M. Gerndt, Eds. ACM, 2009, pp.
39–48.

[60] D. Wallace and S. Sugiyama, “Data virtualization
service,” in Proceedings of Cray User’s Group. Cray
User’s Group, 2008.

[61] J. Fu, N. Liu, O. Sahni, K. E. Jansen, M. S. Shephard,
and C. D. Carothers, “Scalable parallel i/o alternatives
for massively parallel partitioned solver systems,” in
IPDPS Workshops, 2010, pp. 1–8.

[62] N. S. S. Interface,
“https://software.sandia.gov/trac/nessie/.”

[63] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, and
M. Wolf, “PreDatA - preparatory data analytics on
Peta-Scale machines,” in In Proceedings of 24th IEEE
International Parallel and Distributed Processing
Symposium, April, Atlanta, Georgia, 2010.

[64] C. Docan, M. Parashar, J. Cummings, and S. Klasky,
“Moving the code to the data - dynamic code
deployment using activespaces,” in IPDPS. IEEE,
2011, pp. 758–769.

[65] V. Vishwanath, M. Hereld, and M. Papka, “Toward
simulation-time data analysis and i/o acceleration on
leadership-class systems,” in Large Data Analysis and
Visualization (LDAV), 2011 IEEE Symposium on, oct.
2011, pp. 9 –14.

http://www.mcs.anl.gov/~thakur/papers/mpi-io-noncontig.ps
http://www.mcs.anl.gov/~thakur/papers/mpi-io-noncontig.ps
ftp://erc.cat.syr.edu/ece/choudhary/PASSION/sc93.ps.Z
ftp://erc.cat.syr.edu/ece/choudhary/PASSION/sc93.ps.Z
http://www.mcs.anl.gov/~thakur/papers/ext2ph.ps
http://das-www.harvard.edu/users/students/Trevor_Blackwell/Usenix95.html
http://das-www.harvard.edu/users/students/Trevor_Blackwell/Usenix95.html
http://doi.acm.org/10.1145/971697.602266
http://stacks.iop.org/1749-4699/2/015001
ftp://ftp.cs.dartmouth.edu/pub/raoldfi/salvo/salvoIO.ps.gz
ftp://ftp.cs.dartmouth.edu/pub/raoldfi/salvo/salvoIO.ps.gz

	Introduction
	Lessons Learned
	Hardware and Infrastructure Lessons
	The Storage Stack Matters–A Lot
	Asynchronous IO is Getting Harder

	API and Middleware Lessons
	Balance Independence and Coordination
	Externalizing Complexity Can Be Good(or Surface Simplicity = Flexibility)

	Application Support Lessons
	Rich Metadata Enhances Productivity
	Lightly Analyze Data in the IO Path

	Conclusions and Future Work
	Acknowledgments
	References

