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ABSTRACT

The rise of Integrated Application Workflows (IAWs) for
processing data prior to storage on persistent media prompts
the need to incorporate features that reproduce many of the
semantics of persistent storage devices. One such feature
is the ability to manage data sets as chunks with natural
barriers between different data sets. Towards that end, we
need a mechanism to ensure that data moved to an inter-
mediate storage area is both complete and correct before
allowing access by other processing components. The Dou-
bly Distributed Transactions (D?T) protocol offers such a
mechanism. The initial development [9] suffered from scal-
ability limitations and undue requirements on server pro-
cesses. The current version has addressed these limitations
and has demonstrated scalability with low overhead.

Categories and Subject Descriptors

D.4 [Software]: Operating Systems; D.4.7 [Operating Sys-
tems]: Organization and Design—hierarchical design

General Terms

Design, Performance

1. INTRODUCTION

Data movement to a new location, including both persis-
tent storage such as disk or to another compute area stag-
ing area, requires some mechanism to help determine when
a data movement operation is both complete and correct.
While the latter is a more complex problem that requires
validation along the path both to and from any storage loca-
tion, marking a data set as an atomic whole is more straight-
forward. Existing file systems use the concept of a file with
locks against reading and writing, depending on the user
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and the operation, to achieve this semantic. This works well
to offer a way for a user or programmer to identify a data
set. The user simply looks for either a file or some addi-
tional metadata stored within a file to identify the relevant
portions. For a data staging area in an HPC environment,
pieces of the data set are being sent from a potentially very
large collection of processes to a collection of data staging ar-
eas, similar to a parallel storage array. Given the ephemeral
nature of data in a staging area, the overhead of parallel file
system is onerous. Instead, simpler key-value style object
stores with appropriate metadata for object location make
more sense. The difficulty with this alternative structure is
blocking a data set preventing premature or inappropriate
access.

-

Staging Area

= =
S —
- J/]ﬂ oreee

—

Analysis/Viz

Figure 1: Staging Model

The kind of Integrated Application Workflow (IAW) en-
vironment we are targeting is illustrated in Figure 1. The
idea for transactions is to handle the movement of data
from the simulation to the staging area, the data process-
ing in the analysis/visualization routine, and the subsequent
movement of data to storage. In addition, the management
of the analysis/visualization area is also considered. The
transaction protocol is used to help manage resizing of the
resource allocation to the various analysis and visualization
components. This has been described and analyzed previ-
ously [4]. This additional use for Doubly Distributed Trans-
actions (D?T) demonstrates it is general enough to be used
for operations beyond strictly data movement [4]. For this
evaluation, we focus on the data movement case because it
is the most intensive use case and demonstrates the possi-
bilities at scale.

Alternatives, such as Paxos [7] algorithms like ZooKeeper [6],
suffer from two limitations making them unsuitable for this



environment. First, the distributed servers in Paxos sys-
tems are all distributed copies of each other that eventually
become consistent. Given the scale we wish to address, a
single node’s memory is unlikely to be able to hold all of the
data necessary for many operations at scale. They also do
not have a guaranteed for when consensus will be achieved
without using slower synchronous calls. For the tight timing
we wish to support, we need guarantees of when a consis-
tent state has been achieved. Second, these systems also all
assume that updates are initiated from a single client pro-
cess rather than a parallel set of processes as is the standard
in HPC environments. The Intel/Lustre FastForward epoch
approach [2, 10] is discussed in Section 4.

The initial implementation of D*T showed that it is pos-
sible to create a somewhat scalable MxN two-phase commit
protocol, but it suffered from limitations. First, the server
side was required to manage the transactions directly forcing
inclusion of both a communication mechanism between the
clients and the servers for control messages and the server
processes had to incorporate coordination mechanisms to
determine the transaction state among the server processes.
This limited transactions to generally a single server ap-
plication. Second, the single control channel between the
clients and the servers did not serve to address scalability.
Either the aggregate size and/or quantity of messages from
clients to the client-side coordinator or the size of the mes-
sages between the client-side coordinator and the server-side
coordinator will eventually overwhelm memory. To address
these limitations, we redesigned the protocol. The design
changes and new performance results are discussed in the
next sections.

The rest of this paper is organized as follows. First, a dis-
cussion of the new protocol design is presented in Section 2.
Next, some additional components required to demonstrate
this system are discussed in Section 3. The evaluation is
presented next in Section 4 followed by Section 5 with a dis-
cussion of alternatives. Finally, conclusions are presented in
Section 6.

2. NEW PROTOCOL DESIGN

To summarize the semantics of D>T for those unfamiliar
with it, consider the following. Since we have parallel clients
and servers (MxN), it is necessary to have a mechanism to
manage each single operation by a collection of clients with a
collection of servers to ensure that it is completed correctly.
We must also have a way to manage the set of these oper-
ations as a single, atomic action. The difficulty with this
scenario is the need to maintain global knowledge across all
of the clients and servers. This global knowledge allows de-
cisions across all clients. In a traditional distributed trans-
action, the single client always knows the state reported by
all of the “server” resources used. When the client is split
into multiple pieces, each piece ultimately needs to have the
same knowledge, including any knowledge that might be lo-
cal only. If this does not happen, no guarantees can be made.
The message count explosion implied by this level of knowl-
edge is daunting and what prompted this project. Adding
complexity for data movement operations is that a typical
data set will contain multiple globally distributed variables
that each must be treated as an atomic unit.

To accommodate these requirements, we have the concept
of a transaction representing the total set of operations and
the sub-transaction representing a single operation. Each

sub-transaction can represent either a single process per-
forming an action (singleton) or all of the parallel clients
participating in a single action (global). In either case, each
sub-transaction is managed as part of the overall transac-
tion. Voting and commit operations are performed both at
the sub-transaction level and at the transaction level. With
the re-implementation of the protocol, these semantics have
not changed.

The performance of the old protocol was not acceptable.
An example performance evaluation is presented in Figure 2.
In this example, the 256 - 2 represents the number of clients
and the number of servers. The best performance, at 256
clients, is a total of 1.2 seconds. The new protocol implemen-
tation has improved to about 0.07 seconds at worst (0.055
seconds on average), but at 65536 processes. While the new
tests do not include data movement, the minor contribution
of data output to the total time in these tests demonstrates
that the problem was not data movement, but overhead in
the protocol itself.
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Figure 2: Full Protocol Performance

The redesign and re-implementation of the protocol fo-
cused on the lessons learned during the creation of the orig-
inal full protocol. At a detailed level, four major changes
were made.

First, an assumption is made that a client is capable of
determining whether or not a server has completed an oper-
ation successfully or not. This is a typical feature for RPC
mechanisms and is not seen as excessive, particularly when
compared with the old requirement of integrating the proto-
col processing and the client-server communication channel.
This eliminates much of the client-server communication re-
quirements.

Second, the servers are only required to offer a mechanism
to mark an operation as “in process” and prevent access for
inappropriate clients. This may be handled by a transac-
tional wrapper around a service instead.

Third, the server must offer a way to mark an operation
as “committed” during the “commit” phase of the two-phase
commit. Again, this may be implemented in a transactional
wrapper. As an alternative, a scalable locking service like
Chubby [3] might be employed.

Fourth, a second layer of coordination on the client side is
introduced that greatly increases the scalability by consoli-
dating messages from clients into unique sets prior to send-
ing to the overall coordinator. A gossip protocol [5] may
appear sufficient for this purpose, but the delay of eventual
consistency is strictly avoided with this protocol to ensure
guarantees at particular states in the code. For example, if
a failure occurs, the global understanding of the role of all
processes is required in order for effective communication to
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Figure 3: Optimized Protocol

occur for operations like creating sub-transactions or vot-
ing. In this case, the protocol can offer stronger statements
about consistency than these protocols offer. These features
offer a way to easily scale the transaction protocol given the
guarantees we wish to offer.

The key features of these changes comes down to client-
side coordination only and layered messaging. The client-

side only messaging eliminates the greatest performance penalty

of polling for messages both from the client side as well on
the server side to coordinate operations there. It also elim-
inates the need to try to re-negotiate a client-server con-
nection in the case of a failure of the coordinator on either
side.

The layered messaging with message consolidation offers
a way to reduce both the message count volume and the
aggregate size of the total number of messages. For example,
when beginning a transaction, all singleton sub-transactions
must be collected upwards, reconciled into a single global
list of unique items, and then sent back out to all processes.
This gather, reduce to unique items, broadcast structure is

required to support failure recovery. This operation is also
used for creating global sub-transactions and for final voting
of the overall transaction. While other organizations for
providing global consistency are available, the performance
achieved with this approach is sufficiently good that we have
not felt the need to investigate other approaches.

The failure recovery mechanism was initially discussed
elsewhere [9]. It has since been redesigned to work within
the framework of the hierarchical structure in the current im-
plementation. In summary, timeouts for messages between
participants is used to detect failures. While this function-
ality is both complete and tested, it is beyond the scope of
this paper to describe in detail the requirements to make
the recovery process work and to offer the performance im-
pact of detecting and recovering from a failure. The perfor-
mance achieved is a small fraction of a second longer than
the timeout time. This work is being submitted elsewhere
in full detail with a full evaluation.

3. REQUIRED ELEMENTS FOR IAWS

To better represent an IAW, a simple data staging area
that offers transaction support with data storage and meta-
data operations is required. To offer this functionality, two
services are created.

3.1 Datastore Service

The initial and key functionality for a data staging area
is the ability to store data in a context separate from the
original creating application and offer retrieval by others.
While it may be physically stored on one of the same nodes
as the application in some future cases particularly, this con-
figuration is considered separate for the purposes of this dis-
cussion. The datastore service offers the simple ability to
store and retrieve an object in the context of a transaction
ID. The service takes a data blob, generates a unique ID,
marks the data as part of a particular transaction and “in
process” to hide it from other transactions. Service users
can request objects by ID in the context of a transaction ID.
The transaction ID filters the object information returned to
only include objects that are either “active” or are part of the
current transaction. In this way, the service can create an
object hidden from view of other clients and still support the
transaction activities. Once the transaction is voted correct
and complete, the list of objects associated with a transac-
tion ID can be marked as “active” making them visible to
other clients. While other functionality, such as authoriza-
tion controls, are necessary for a production system, this
demonstration offers no additional functionality.

3.2 Metadata Service

The metadata requirements for the datastore service to
be generally useful has been presented previously [8]. The
details of what features are provided are described below.
Since that publication, the implementation has been com-
pleted and used in the demonstration system. Many de-
tails have been determined fleshing out the requirements in
more detail. Based on the examples explored, this service
assumes a rectangular data domain meaning that the sim-
ulation space is some rectangular solid (i.e., a rectangular
multi-dimensional array). Other configurations, such as an
unstructured grid, are not supported. This and other config-
urations would have to be supported for any general system.
Using the rectangular simulation domain, the metadata ser-



vice offers the ability to create a variable with some global
dimensions and a collection of “chunks” representing the data
from a single process or similar magnitude of data. As with
the datastore service, the metadata service supports creat-
ing a variable in the context of a particular transaction ID
and marking it as “in process” to prevent inappropriate ac-
cess. This variable ID can then be distributed to the other
participating processes for their creation of chunk entries.
Alternatively, some aggregation scheme could be employed
to reduce the load on the metadata service. Also like the
datastore service, there is an activate function to mark a
variable as “active” making it visible to other clients. Other
concerns, such as authorization that are solely part of the
metadata service rather than part of the transaction proto-
col itself, have similarly been omitted for the purposes of
this demonstration.

3.3 Discussion

These services are separated for two primary reasons. First,
the scalability of the datastore service is determined by the
storage capacity while the metadata service scales based on
simultaneous users and/or request throughput. By offering
different services for this functionality, we can scale each
according to the application need and separate the perfor-
mance impact of either heavy data movement activity com-
pared with metadata activity or vice versa.

Second, note that the concept of a file was not chosen as
the abstraction for this service. Instead, the relationship
between the data storage and the qualities of the metadata
we believe need to be separate. This allows use of a custom
metadata service optimized for the kind of data organization
and structure for a particular application while still using
the same data storage service. This choice reflects our be-
lief that future systems will abstract away the file blocking
mechanism and instead focus on data sets. This approach
has already been successfully demonstrated and adopted by
users of the eSiMon [1] simulation dashboard.

4. EVALUATION

To evaluate the scalability and performance of DT, tests
are performed on Cielo at Sandia National Laboratories.
Cielo is a Cray XE6 platform with 8,944 nodes each con-
taining dual, eight core AMD Opteron 6136 processors and
32 GB of RAM. It uses the Cray Gemini network in a 3D
torus and uses the Cray Linux Environment. Tests are per-
formed at powers of two scale from 256 up to 65536 pro-
cesses. We use two pairs of datastore and metadata services
along side the process counts mentioned here. Each of these
other services is given a single node on which to operate.

The represented TAW consists of a writing application cre-
ating ten 3-D variables. Each of these variables is distributed
across all of the processes with each process containing a
32x32x32 double precision floating point number chunk for
each variable. The total space is scaled by doubling each
dimension keeping the total dimensions as close to square as
is possible. All ten of these variables and the corresponding
chunks are written to the first pair of datastore and meta-
data servers. Then, an update application marks one vari-
able as “in process” in the first metadata service, reads the
chunks in parallel from the first datastore service, updates
the data, creates a new variable in a second metadata service
inserting the updated data into the second datastore service,
and then deletes the original variable from the first datastore

and metadata services. For the purposes of this evaluation,
only the overhead incurred by the transaction protocol is re-
ported. No attempts were made to make the datastore and
metadata service efficient and including those performance
results would obfuscate the impact of having transactions
surround data movement applications. The overheads are
measured during the update application’s activities and rep-
resent the green and blue arrows within Figure 3.

Figure 4: Example Hierarchy

With the three-tier structure employed by D?T, we choose
to always employ at least two sub-coordinators, even at
small scale, to incur higher overhead costs. An example of
this configuration is shown in Figure 4. In this case, process
0 acts as the coordinator, sub-coordinator, and a subordi-
nate. Process 3 acts as a sub-coordinator and a subordinate.
The rest of the processes operate solely as subordinates. The
configuration for each run consists of a minimum of 2 sub-
coordinators and a maximum of 256 subordinates per sub-
coordinator. That yields 256 sub-coordinators each with
256 subordinates at 65536 processes. This is illustrated in
Table 1 showing the various scales evaluated and the config-
uration for each. Other tests of smaller numbers of processes
were run, but were omitted because they did not add any
additional information to the results.

The test values reported include the following actions:

1. txn_create_transaction - create a new transaction

2. txn_create_sub_transaction - create a new singleton sub-
transaction

3. txn_create_sub_transaction_all - called three times to
create three global sub-transactions

4. txn_begin_transaction - start the transaction process-
ing
5. txn_commit_sub_transaction - called four times total

to commit the four sub-transactions

6. txn_vote_transaction - vote to commit or abort the
overall transaction

7. txn_commit_transaction - commit the entire transac-
tion

8. txn_finalize_txn - clean up any transaction specific mem-
ory or perform any final operations

All operations except txn_create_sub_transaction and
txn_commit_sub_transaction are performed as effectively col-
lective operations. These two exceptions are only performed



by the single process involved. In order for the existence of
this singleton sub-transaction to be guaranteed to be known,
we split the create and begin operations to provide a time-
frame during which all singleton sub-transactions should be
initialized. The begin operation gathers knowledge of all
of these singleton sub-transactions and broadcasts it to all
processes to make failure recovery possible. This step guar-
antees that every singleton sub-transaction will be known or
the begin will fail due to a process failure. Since the global
sub-transactions are global operations, they can be done ei-
ther before or after the begin transaction call. In our case,
we have one global sub-transaction created before the begin
transaction and two afterwards.

Table 1: Performance Tests Scaling Configuration

Processes | Number of Processes Per
Sub-Coordinators | Sub-Coordinator
256 2 128
512 2 256
1024 4 256
2048 8 256
8192 32 256
16384 64 256
32768 128 256
65536 256 256

The selected sequence of operations gives a representa-
tive idea of what a typical transaction may include. Each
test is performed seven times and the mean value is pre-
sented. Given the small magnitude of the values, there is
a bit of variance that has a large percentage, but small ab-
solute value. The results are presented in Figure 5. The
results for 4096 processes were lost.

In the interest of saving space, only the results for 64K
processes is discussed. In all cases, the time spent in oper-
ations for the 64K case are the longest of all cases tested.
At a detailed level, the time for the 64K processes case can
be itemized as follows. First, the slowest operation, by far,
is the txn_create_sub_transaction_all with a maximum time
of 0.0310 seconds for one of the calls. The mean time is
0.01 seconds. Second, the other operations are all at less
than 0.005 seconds on average and a maximum of 0.012
seconds. Third, the time for the initialization and cleanup
of the total protocol, the calls equivalent to MPI_Init and
MPI_Finalize, take 0.38 seconds total. Since the txn_init call
is the first call that uses MPI in the system and that it is a
full order of magnitude slower than any other operation at
worst, we believe there is MPI initial communication chan-
nel setup being established accounting for the extra time.
The txn_finalize takes a maximum of 0.0002 seconds. Since
these calls are done once for the entire application lifetime,
we did not include them in the results since they are not
part of the typical transaction cost that would be incurred
for each transactional operation.

5. DISCUSSION

The leading alternative to D*T is the Intel/Lustre Fast-
Forward Epoch approach [2, 10]. While DT is intended
for a general purposes, epochs are designed specifically to
address the needs of a shared storage array with a large
number of parallel clients. The general idea is to mark ev-
ery operation with a transaction id, record a process count
somewhere to allow reconciliation later, and have every pro-
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Figure 5: Total Transaction Overhead

cess operate independently for the duration of the writing
operation. A second, more synchronous mode is also avail-
able. In this synchronous mode, the user is required to man-
age the transaction ID and to update the transaction state
in the storage servers. During a read process, it must be
determined what is the most current, complete, “Readable”
version of the file. This entails contacting all of the storage
devices to determine all of the versions of blocks stored on
each device. With that information, it can be determined
which of these transactions is “Readable”. While this rec-
onciliation operation may happen asynchronously, it must
be done before a read operation potentially prompting it
to be triggered by a client call or potentially stale data is
presented as the most current.

Another effort to offer consistency and data integrity for
the ZFS file system [11] covers some of the same territory.
Instead of a focus on the processes all having a notion of
completion as a transaction, this work focuses on the in-
tegrity of the data movement operations. We view this work
as something that should be considered hand-in-hand with
a transaction approach to ensure the integrity of the move-
ment of the data in addition to the agreement of processes
about the successful completion of a parallel operation.

6. CONCLUSIONS

We have demonstrated that synchronous two-phase com-
mit transactions can have low overhead and be used with
roughly synchronous operations with little additional over-
head. While other use cases, particularly those that require
a greater degree of asynchrony, require a different approach,
D?2T offers a working solution for a wide variety of scenarios
today. The bigger question of what sort of synchronization
mechanism is appropriate for various use cases is currently
under investigation.

The evaluation of the fault detection and recovery are be-
yond scope for this paper and are in preparation for presen-
tation elsewhere.
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