Exploring Trade-offs in Transactional Parallel Data Movement

Ivo Jimenez, Carlos Maltzahn (UCSC) Jay Lofstead (Sandia National Labs)

November 18, 2013

The need for Transactional Atomicity

The difference with Databases

- In terms of ACID, we want:
 - Atomicity
 - Durability
 - Leave Isolation/Consistency to the clients
- Single Transaction (vs. thousands)
- Massive amount of cohorts (vs. hundreds)

The approach

- Assume that storage servers can do:
 - multi-version concurrency control
 - per-object visibility control
- Clients handle consensus

Consensus Protocols

NBTA

- Non-blocking Transactional Atomicity
- "HAT" formalization (Bailis et al. VLDB 2014)
- In the context of Highly-available systems
- Can also be applied in synchronous systems to achieve very low overhead

Features

Protocol	Fault Model	Block	Async	Replication
NBTA	none	Yes	No	No
2PC	fail-stop	Yes	No	No
3PC	fail-stop	No	No	No
Paxos	fail-recover	No	Yes	Yes

Our goal

- One-size-fits-all solution won't work
- Let users pick based on their needs:
 - Length of job
 - MTTF
 - fault modes
 - etc
- We want to explore trade-offs and characterize protocols based on the user needs

Preliminary Evaluation

Future Work

- Incorporate fault-tolerance
 - Cohort failure: can recover individually
 - Coordinator failure: 3PC, Paxos
- Coordinate asynchronously
 - No need to wait for global consensus

Related Work

- DOE's Fast Forward Storage and I/O. The FastForward approach is similar to the NBTA protocol.
- Fault-tolerant MPI make use of consensus protocols to identify faulty processes.
- Recovery in multi-level checkpoint restart.

Thanks!