
Exploring Trade-offs in
Transactional Parallel Data

Movement

Ivo Jimenez, Carlos Maltzahn (UCSC)

Jay Lofstead (Sandia National Labs)

November 18, 2013



The need for Transactional Atomicity

1



The difference with Databases

• In terms of ACID, we want:
• Atomicity
• Durability
• Leave Isolation/Consistency to the clients

• Single Transaction (vs. thousands)
• Massive amount of cohorts (vs. hundreds)

2



The approach

• Assume that storage servers can do:
• multi-version concurrency control
• per-object visibility control

• Clients handle consensus

3



Consensus Protocols

4



NBTA

• Non-blocking Transactional Atomicity
• “HAT” formalization (Bailis et al. VLDB 2014)
• In the context of Highly-available systems
• Can also be applied in synchronous systems
to achieve very low overhead

5



Features

Protocol Fault Model Block Async Replication

NBTA none Yes No No
2PC fail-stop Yes No No
3PC fail-stop No No No
Paxos fail-recover No Yes Yes

6



Our goal

• One-size-fits-all solution won’t work
• Let users pick based on their needs:

• Length of job
• MTTF
• fault modes
• etc

• We want to explore trade-offs and
characterize protocols based on the user
needs

7



Preliminary Evaluation

8



Future Work

• Incorporate fault-tolerance
• Cohort failure: can recover individually
• Coordinator failure: 3PC, Paxos

• Coordinate asynchronously
• No need to wait for global consensus

9



Related Work

• DOE’s Fast Forward Storage and I/O. The
FastForward approach is similar to the NBTA
protocol.

• Fault-tolerant MPI make use of consensus
protocols to identify faulty processes.

• Recovery in multi-level checkpoint restart.

10



Thanks!

11


