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The need for Transactional Atomicity
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The difference with Databases

• In terms of ACID, we want:
• Atomicity
• Durability
• Leave Isolation/Consistency to the clients

• Single Transaction (vs. thousands)
• Massive amount of cohorts (vs. hundreds)
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The approach

• Assume that storage servers can do:
• multi-version concurrency control
• per-object visibility control

• Clients handle consensus
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Consensus Protocols
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NBTA

• Non-blocking Transactional Atomicity
• “HAT” formalization (Bailis et al. VLDB 2014)
• In the context of Highly-available systems
• Can also be applied in synchronous systems
to achieve very low overhead
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Features

Protocol Fault Model Block Async Replication

NBTA none Yes No No
2PC fail-stop Yes No No
3PC fail-stop No No No
Paxos fail-recover No Yes Yes
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Our goal

• One-size-fits-all solution won’t work
• Let users pick based on their needs:

• Length of job
• MTTF
• fault modes
• etc

• We want to explore trade-offs and
characterize protocols based on the user
needs
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Preliminary Evaluation
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Future Work

• Incorporate fault-tolerance
• Cohort failure: can recover individually
• Coordinator failure: 3PC, Paxos

• Coordinate asynchronously
• No need to wait for global consensus
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Related Work

• DOE’s Fast Forward Storage and I/O. The
FastForward approach is similar to the NBTA
protocol.

• Fault-tolerant MPI make use of consensus
protocols to identify faulty processes.

• Recovery in multi-level checkpoint restart.
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Thanks!
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