
I/O Containers: Managing the Data Analytics and Visualization Pipelines of High
End Codes

Jai Dayal, Jianting Cao, Greg Eisenhauer, Karsten Schwan, Matthew Wolf, Fang Zheng
Georgia Institute of Technology

Hasan Abbasi, Scott Klasky, Norbert Podhorszki
Oak Ridge National Labs

Jay Lofstead
Sandia National Labs

Abstract—Lack of I/O scalability is known to cause measur-
able slowdowns for large-scale scientific applications running
on high end machines. This is prompting researchers to devise
‘I/O staging’ methods in which outputs are processed via online
analysis and visualization methods to support desired science
outcomes. Organized as online workflows and carried out in
I/O pipelines, these analysis components run concurrently with
science simulations, often using a smaller set of nodes on the
high end machine termed ‘staging areas’.

This paper presents a new approach to dealing with several
challenges arising for such online analytics, including: how
to efficiently run multiple analytics components on staging
area resources providing them with the levels of end-to-end
performance they need and how to manage staging resources
when analytics actions change due to user or data-dependent
behavior. Our approach designs and implements middleware
constructs that delineate and manage I/O pipeline resources
called ‘I/O Containers’. Experimental evaluations of containers
with realistic scientific applications demonstrate the feasibility
and utility of the approach.

Keywords-Data Staging, Data Analytics, in-Situ, Visualiza-
tion, Scalable I/O, Runtime Management, resource sharing

I. INTRODUCTION

On current generation petascale platforms, scientific ap-
plications like the GTC [1] and GTS [2] fusion simulations
are already generating terabytes of data every few minutes.
To store these immense data volumes without overwhelming
the file systems attached to petascale machines, developers
have turned to machine-resident methods for ‘in situ’ data
processing and I/O data staging [3], [4], [5], [6], [7].
With such methods, data can be reduced or compressed
before it is placed into storage [8], [9], buffered and better
organized for efficient data movement [3] and storage on
parallel file systems [10] or for subsequent (post-storage)
access and manipulation, and more generally, pre-processed
or re-organized in the ways needed for data analytics or
visualization [11], [12].

While the above methods and infrastructures have become
key to the I/O processes running on high end machines, as
we move to the exascale, online analytics make possible new
ways to better understand and control scientific simulations
while they run. This includes (i) continuously ascertain-
ing simulation validity, permitting it to be terminated or

corrected without undue waste of machine resources, (ii)
gaining rapid insights into the scientific processes being sim-
ulated (online visualization), or even (iii) enabling methods
for application steering. The result of these developments,
however, is that the new ‘normal’ for high end codes is that
they will be structured as parallel simulations running jointly
with a dynamic set of tightly coupled parallel analytics,
visualization, and validation codes. This combination of
analysis components deployed along the I/O path are called
an I/O pipeline. A consequent challenge, then, is how to
manage the machine resources used by the ensemble for
optimal time to solution?

Online management of I/O pipelines is important for
several reasons. First, during an application run, its I/O char-
acteristics and analytics requirements can vary substantially
(‘normal’ operation vs. checkpointing). Second, there will
be analytics that prove too expensive to run online perhaps
due to computational or memory requirements and must
be moved offline to avoid blocking the simulation. Third
and more generally, the throughput and scaling character-
istics of analytics computations can be dynamic and they
may not be well-understood as such components are often
developed separately from the core simulations. Important
features of the management system, therefore, are support
for continuous online profiling and monitoring with fine-
grained launch capabilities. Such performance information,
then, can be used to inform both users and resource man-
agement methods about opportunities and limitations in their
execution environment.

This paper describes the I/O container approach, depicted
in Fig. 1, to managing dynamic I/O and analytics pipelines
on high end machines. Containers provide a common, con-
trollable execution framework for the diverse analytics com-
ponents running in conjunction with a scientific simulation.
Such components can be compiled and deployed separately
each in their own container, have well defined inputs and
outputs [13], can be parallel (MPI or threads), and may have
dependencies across them.

For this model, I/O containers offer:
1) controlled resource usage: a container provides

and manages resources for the analytics component



mapped to it;
2) per component management: a container offers to

its component an actively managed execution envi-
ronment that ensures isolation from other containers’
resource demands.

3) metric-driven operation: beyond the per-container
methods for managing its resources, the container
runtime can also enforce global goals, driven by
metrics of interest to end users, such as priorities or
performance requirements. Enforcing such properties
will require operations such as changing resource
allocations amongst containers.

Finally, since the control and management actions taken by
container software must not place applications or analytics
components into inconsistent states or cause resource loss
due to failure, we are experimenting with fault-resilient
transactional techniques [14] that can make strong guar-
antees about the successful completion of certain control
actions. An example is a guarantee that a resource removed
from one container is successfully given to another.

Container 
Manager 

Global 
Manager 

Container 
Manager 

Container 
Manager 

Application 

Container 
Container 

Container 

Storage 

Analysis Analysis 
Analysis 

Legend 

Data Movement 

Monitoring and 
Control Messages 

Figure 1: I/O Pipeline Showing I/O Containers

Using I/O containers permits end users to focus on
analytics functionality and correctness instead of having to
adjust and ‘size’ component resource allocations and/or tune
their performance for online use. Using containers, a user
can also launch a visualization code when needed. Further,
containers make viable automated methods for resource
allocation and re-allocation that operate in response to com-
ponents’ changes in resource needs. This is demonstrated
in our current implementation where multiple containers
segment the common staging area used to execute online
analytics for a scientific simulation. This is done by running
online I/O data visualization with, for example, ParaView
in one container while running analytics using VTK in
another container. In this scenario, a dynamic requirement
for additional resources to run the analytics can be met by
‘stealing’ resources from the visualization container, if it

does not need them, or by using spare staging resources,
if available. All such actions are enabled by the container
framework via its well-defined component interfaces and
flexible inter-component communication methods and they
are supported with online monitoring that profiles individual
containers for their current resource usage. We also use
such monitoring to drive bottleneck detection to determine
the end-to-end latencies containers, arranged as processing
pipelines, experience to avoid blocking the pipeline.

Current I/O staging technologies do not yet offer function-
ality that dynamically manages the tightly coupled analytics
run with high end codes. In our own earlier work, statically
profiled analysis routines are run in static configurations
sized to be resource-rich for worst case data volumes and
processing needs [11].

This paper demonstrates the concept and an implementa-
tion of I/O containers on a Cray Portals cluster. Supporting
the LAMMPS molecular dynamics application, representa-
tive analytics and visualization components serve the pur-
pose of discovering and dealing with ‘crack formation’ in the
substrate being modeled, as explained in more detail in [15].
Each of the analytics components have different scalability
characteristics and they can utilize different degrees of
parallelism for faster (or slower) execution in response to
changes in I/O behavior and requirements. Further, some
of the analytics methods are sufficiently computationally
expensive that running the components using them is really
only merited when some interesting application-level event,
such as when the formation of an inelastic deformation has
occurred. Ideally, the system should dynamically respond to
changes due to the data itself (i.e., when a crack is detected)
as well as due to online user direction (i.e., add this filter
now while I’m looking at the output). In all such cases,
container management can dynamically adjust the resources
allocated to balance component pipeline execution.

Our initial containers implementation is based upon the
EVPath and DataTap staging solutions [16], [3] and ex-
perimental evaluations use analytics components derived
from those described for the Smartpointer software [15].
Current work experiments with the S3D [17] combustion
modeling code and the numerous analysis and visualization
components developed for it to perform flame front tracking
and visualization.

Future work with containers will also apply the con-
cept and the control transactions mentioned above to the
CTH [18] shock physics code as part of a data pipeline that
turns the raw atomic data into materials fragments to allow
tracking. By moving this workflow online, data can be staged
and processed, both generating fragments and tracking them
as they evolve in the simulation, opening new opportunities
for understanding the physics at work.

The implementation of I/O containers evaluated in this
paper demonstrates the utility of the containers approach
with ongoing implementation hardening it and experiment-



ing with the additional use cases mentioned above. The
performance results shown in Section IV show containers
do not add notable overheads to running the components
they manage. More importantly, they show containers to
be potentially useful. Specifically, when using a simple
management policy, containers improve the end-to-end la-
tency through an analysis pipeline and prevent application
blocking by taking unneeded components offline.

II. RELATED WORK

A number of on-going projects could benefit from I/O
containers. In particular, while currently realized for ADIOS
and analytics pipelines, containers are equally useful to other
‘data staging’ solutions as long as they describe and use
well-defined component interfaces. However, without using
actual virtualization solutions like Palacios [19], additional
programming and integration efforts will be required to add
the concept to tightly integrated analytics codes in which
individual actions are not separately defined and/or use well-
defined component APIs, such as IBM’s System S [20].

The basic idea of containers presented here is akin to
the ‘island’ or ‘container’ concepts developed for both mul-
ticore/SMP platforms and datacenter systems. Concerning
the former, containers are similar in spirit to the hypervisor-
level ‘resource islands’ [21] in which per island resource
managers run entirely different scheduling algorithms, but
cross-island cooperation (or global control) is needed to
ensure platform or application properties spanning multiple
islands. The container implementation shown in this paper is
entirely in middleware and targets HPC clusters. Mesos’ [22]
original intent was to permit fine grain resource sharing
across multiple applications running in datacenter systems
with only recent work (unpublished) exploring resource
trading methods that may also be suitable for the HPC
domain.

Readers may correctly recognize that the basic idea of
‘containers’ relates to research conducted under the guise of
virtualization, such as projects like [23], [24], [19]. In this
context, a container can be viewed as a lightweight construct
similar to a hypervisor for a ‘virtual machine’ that explicitly
manages the execution environment of parallel components.
Containers, however, only adopt some of the functionality
of modern hypervisors and they are implemented as user-
space abstractions for two reasons. First, this makes them
suitable for current and next generation high end machines.
Second, as opposed to closed hypervisors, we permit end
users to realize their own custom management policies for
their applications.

Our own earlier work on ‘service augmentation’ [25]
demonstrates the utility of attaching Quality of Service
(QoS) management actions to I/O pipelines and shows that
container principles can be applied to other data staging
or streaming infrastructures and systems, including systems
like DataSpaces [6] and Glean [7], both of which use

componentized approaches. In contrast, it would be more
difficult to apply containers to the graph-structured, fine-
grained stream processing actions run by infrastructures like
System S or StreamIT [20], [26]. Our approach operates at
the coarser-grain level of the typical analytics actions carried
out on high end machines often implemented as parallel MPI
codes spanning many machine nodes.

III. I/O CONTAINERS

I/O containers are run-time abstractions that allow in situ
or in transit data processing actions to be embedded into
a dynamically managed execution environment. Each single
container manages an executable that carries out analytics
tasks on the data it ingests, with some examples mentioned
in Section I.

More complex structures, like pipelined components, are
supported by chains of containers supervised by a higher
level manager interfacing to per-component manangers. In
all such cases, components are run on the machine resources
made available by the container and controlled by potentially
container-specific management and scheduling.

Fig. 1 depicts a conceptual model of I/O contain-
ers. A multi-level management scheme can maintain both
container-level and global (i.e., across all containers) prop-
erties. Such distributed management is supported with a flex-
ible monitoring and control infrastructure gathering needed
information and then issuing appropriate control operations.
Controlled data movements avoid blocking a sender by a
receiver that is not well prepared to accept new data.

A. I/O Container Runtime Constraints and Desired Proper-
ties

In situ I/O data processing can be performed in multiple
locations: compute nodes, staging nodes, or an ancillary
analysis/visualization cluster. Our current implementation
uses staging nodes in a batch scheduler environment, and as
a result we must realize the desired properties under limited
staging resources.
Obtaining desired performance with limited staging
resources. With current high end machines, batch schedulers
assign to each user some number of requested nodes for
the entire duration of their application’s execution and the
user must determine how to partition these nodes. Typical
relative sizes of staging to simulation nodes in our past
experiments on the Jaguar petascale machine range from
1:512 to 1:2048 [11], [3]. These ratios impose stringent
resource constraints on staging area computations and on
the volumes of data stored on staging nodes.

From a user’s perspective, certain analytics may be impor-
tant or critical to complete whereas others (e.g., visualiza-
tion) can perhaps be delayed. Examples of critical analytics
are those that affect how output is performed or even steer
or control the simulation itself. Substantial recent work, for
instance, is investigating continuous methods validating that



simulations continue to produce scientifically meaningful
results, as with uncertainty quantification.

As a demonstration of such systems, the example used in
this paper is analytics used for the online detection of crack
formation in a material being modeled by the LAMMPS
molecular dynamics code. Using this as an illustrative ex-
ample, one can follow several implications for embedding
analytics into I/O containers:
(i) dynamic response – since analytics workloads can change
during a program’s run (e.g., when crack formation imposes
sudden loads on analytics or visualization actions), analytics
components’ resource needs may change, e.g., to run suffi-
ciently fast to prevent application blocking;
(ii) isolation – new analytics may be launched in response
to interesting program events, but this must not jeopardize
the execution of other analytics actions required by the
application; and
(iii) metric-driven operation under resource limits – addi-
tional workload and new analytics actions must be carried
out in the confines of the staging resources allocated when
an application run starts with the performance needed by
said actions and guided by metrics that may differ across
components and/or use cases. Consider, for instance, a
container running data aggregation (e.g. scientific check-
pointing) code: it need not complete writing data to stable
storage until the next timestep arrives. This is in contrast
with another container running code for crack discovery: it
should complete with low latency to minimize the danger of
wasted CPU cycles on scientifically invalid computation.

We conclude from these facts that (1) I/O containers
must be actively and continuously managed in ways de-
termined by their functionality and properties and by user
requirements. Concerning properties, some components may
scale well when they are given additional nodes (e.g., linear
speedup) while others may not. If sufficient resources are
available, this may be controllable by spawning multiple
component instances fed by subsequent simulation output
steps while with other components, data may be filtered
to reduce component workload. In general, these comments
illustrate that there must be diversity in the management
methods used with containers. This prompts us to design a
container framework in which (2) I/O containers support per
component custom management with global management
adaptable to current usage or needs.
Componentized operation. With I/O containers, each ana-
lytics action runs as a separate application (i.e., component),
with well-defined input and output interfaces. This makes
it possible to run entirely different, dynamically swappable
analytics codes without requiring them to be integrated into
a single executable. Reusability of old container actions can
be maintained while allowing easy evolution of new actions.
In our implementation, we utilize the ADIOS read/write
interfaces to define the input and output for our actions.
This gives us all of ADIOS’s tools for easing the user spec-

ification of component interfaces, but at this time, ADIOS
lacks support and programming model for describing multi-
component interactions.

These facts impose limitations on how to manage contain-
ers as decisions made upstream, for instance, have a direct
effect on downstream operation and they directly affect the
end-to-end QoS properties of I/O pipelines [27], [25]. An
extreme example is the removal of a component from the
I/O pipeline rendering its downstream components useless.
Stated differently, there will typically be well-defined Ser-
vice Level Agreements (SLAs) for running analytics actions
on the outputs produced by simulations. The simplest case
is the one mentioned earlier where analytics must complete
before the application initiates its next output step so as
to prevent blocking on I/O. Other SLAs include limits on
the end-to-end latency through an I/O pipeline (e.g., the
analytics results affect subsequent steps or even steer the
application itself) and reliability requirements in terms of
storage actions having completed to avoid losing check-
point data. For I/O containers, this results in the additional
requirements that (3) management actions are guided by
user-determined metrics driving per-container and cross-
container (i.e., global) management policies.
Flexible monitoring and control. Active management of
varied components with potentially custom policies cannot
be carried out unless (4) there is information about the cur-
rent state of resource availability, usage requirements, and
component behavior. The I/O container framework satisfies
these needs by use of built-in monitoring primitives, the
execution of which is triggered by per component (i.e., per
container) or global events. The data captured by monitoring
can be varied and so can the ways in which monitoring
data is processed to detect events of interest to container
control. The example shown in this paper tracks of end-
to-end latency of actions in a pipeline-structured set of
containers, with control actions taken when the latency SLA
specified by the user is exceeded.
Reliable control. Care must be taken to apply agreed-upon
consistency for distributed infrastructure control such as is
discussed here. For instance, when two containers trade
resources, the resource is first removed from the donor and
then added to the recipient. Failures incurred during such
trades can lead to inconsistent system states in which one
container believes a resource was removed, but the second
never completed the action that added it to its resource
inventory. To address such issues, we are experimenting with
(5) control transactions that rule out such situations under
arbitrary failure conditions.

In summary, the I/O container framework developed in our
work can be used to realize (1) per-container and (2) global
management policies, (3) customized to their current use and
to meet user requirements, (4) enabled by online monitoring
of the varied metrics of relevance to different policies, and
(5) made resilient to failure via control transactions.



B. Software Architecture and Implementation

Figure 1 depicts a high-level view of the I/O container
software architecture. Each container is shown to have its
local manager responsible for the control and monitoring
actions associated with that container. The container man-
ager also serves as the point of contact for a container’s
interactions with global management, which in our current
implementation is a distinct global manager responsible for
maintaining naming data, monitoring, and enforcing global
goals (e.g., SLAs like those limiting end-to-end latencies
across several components). Global management could also
be implemented with peer-to-peer algorithms that operate
across local managers, but at the scales of our current
system, it is preferable to use a single global management
entity. Methods like those described in ZooKeeper [28] can
be used to maintain high levels of resilience for this potential
single point of failure.

Each local manager has complete control over its interac-
tions with the cohort of actions it manages. This is important
because only the local container manager understands the
characteristics of its designated action(s). By decoupling
management in this fashion, it becomes possible to cus-
tomize the management plane and simplify global manage-
ment as it is not required to understand all computational
models, I/O characteristics, QoS requirements, etc.

The monitoring shown in Figure 1 provides managers the
information needed for making management decisions. For
example, the global manager might observe a slowdown in
one container that can be remedied by adding resources to it.
In our design, the global manager has an aggregate view of
the environment so that it can use monitoring for bottleneck
analysis, for instance. The lower level managers, then, are
the ones that directly interact with their component instances
to gauge current throughput, queue lengths, and estimates
of how resource additions or removals would impact them.
Based on such information, they can assess how many
resources are needed to remedy bottlenecks, for instance, and
it is this multi-segment distributed management that allows
for overall SLA satisfaction.

Containers control data movement so as to not overwhelm
receivers with data they cannot handle and in order to better
utilize the machine’s interconnect (e.g., through communi-
cation scheduling, as described in DataStager [3]). Further,
container managers communicate for monitoring and control
purposes and they must understand inter-component com-
munications. They must know from where data is received
and where to send outputs after completing components’
analytics actions.

1) Container Implementation: A representative use case
illustrates the implementation of I/O containers based on the
widely popular LAMMPS (Large Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)) code. It is written
with MPI and performs force and energy calculations on

Table I: Characteristics for SmartPointer Analysis Actions
Complexity Compute

Model
Dynamic
Branching

Helper O(n) Tree No
Bonds O(n2) Serial, RR,

Parallel
Yes

CSym O(n) Serial, RR No
CNA O(n3) Serial, RR No

discrete atomic particles. After a number of user-defined
epochs, the simulation data is output. Depending on the
number of particles, the amount of data being output can be
from a few megabytes to terabytes in size. Additionally, for
fault tolerance reasons, LAMMPS may perform checkpoint
operations to periodically save the simulation state.

We use the SmartPointer [15] package as an analytics
toolkit. It ingests molecular data from the LAMMPS simula-
tion and performs a series of analyses on the data to produce
useful data annotations and provide science users with rapid
insights like those needed to check the ‘health’ and scientific
state of their running simulations. With SmartPointer, such
insights can be gathered both online and as post-processing
after data has been moved to disk. The SmartPointer toolkit
and the computational pipelines running in the staging area
are comprised of a set of codes with a wide range of re-
quirements and expectations, such as different computational
models, different runtime complexities, and dynamic code
branching. Table I summarizes these characteristics.

The SmartPointer components used in this example are as
follows. LAMMPS Helper is an aggregation tree that accepts
atomic bonds data from the parallel LAMMPS simulation.
The depth and number of nodes in the tree depends on
factors such as how much data can fit into memory, how
many functions will need this data, and whether the subse-
quent functions are parallel. Bonds reads atomic data from
LAMMPS Helper and determines whether two atoms are
currently bonded. It outputs two data types: the atomic data it
ingests and an adjacency list representing the bonded atoms.
CSym is a central symmetry calculation that is one way to
determine whether a bond between atoms, as determined
by Bonds, has been broken. CSym reads atomic data and
also needs one reference atomic adjacency data set from
Bonds. If a break is detected, Bonds then kills itself and
notifies the next stage, CNA, to start reading data from
Bonds. This scenario represents a dynamic branch in the
pipeline. CNA, or Common Neighbor Analysis, is used to
do extensive structural labeling of the atomic environment
including detecting crystals, faces, and orientation. After this
stage, the data is written to disk for this exercise, although
in the more general scenario, it might also be sent to online
visualization tools for dynamic interaction.

Fig. 2 depicts the I/O containers software stack. At the
first level beneath the application, we have the standard
ADIOS interface providing us a common API to use a
variety of I/O methods. In our current implementation,
we use the DataTap library to provide us with controlled
data movement between applications and components and



Application/Analysis 

ADIOS Transport Hooks 

DataTap 
C

on
ta

in
er

 
C

lie
nt

 M
gm

t 
S

tu
b 

Transport API (Portals, Infiniband) 

EVPath 

ADIOS API 

I/O Containers 
Middleware 

Figure 2: The I/O Containers Implementation Design

employ a thin layer of hooks to integrate DataTap into the
ADIOS interface. These layers are enhanced with a container
management and control layer based on the EVPath library.
This layer is responsible for interacting with the Container
Manager (depicted in Fig. 1) and responding to control
messages by altering the appropriate state in its neighboring
layers.

C. Controlled Data Movement

Data movement between I/O containers uses asyn-
chronous I/O as it has been shown to provide significant
improvements in I/O performance with gains up to a factor
of 2 [29]. Specifically, the container framework uses the
‘DataStager’ [3] transport method available through ADIOS.
This implementation works as follows: the source container
stores data in a buffer, pushes metadata to the target con-
tainer that then pulls the data when it is ready to do so
using the RDMA-based interconnects dominant on high end
machines. An added benefit of DataStager is that such pulls
can be scheduled to help prevent contention on the HPC
interconnect causing the application to run more slowly than
using synchronous I/O.

D. Management Framework

An important attribute of I/O containers is the presence of
both local – per container – and global managers. Local man-
agers provide the interface to each container’s component
and the way it can be changed to the global management
entity responsible for maintaining multi-container properties
and SLAs. A local container manager, for instance, would
be aware of the performance improvement (or reduction)
seen when adding (or removing) resources from it. A typical
example is its knowledge about a parallel component’s
speedup properties, which could be the result of pre-supplied
performance data or directly measured at runtime. The local
manager also understands how to capture per-component
monitoring data and how to interpret it, such as measuring
the data volume and end-to-end delay through the container
to diagnose its throughput. Finally, the local managers
inform global management about local needs and behavior
in support of global goals.

A specific example presented and experimentally evalu-
ated in Section IV is that the higher level authority may
detect that a certain container is a bottleneck in a pipeline

of containers. The higher-level manager should be able to
ask the container-local authority what is needed in order
to speed it up (e.g., more cores or more I/O bandwidth).
Based on this information and on its understanding of the
global environment, the higher-level authority can then make
a decision on how to proceed. For example it can shrink one
container to increase another or lower the output frequency
of one to free up I/O bandwidth for others. Additionally, with
this framework, we can allow for some control features that
will change the data flow for a container, for example, being
able to add hashes of the data to the output for soft error
detection.

We currently use the following simple management in-
terfaces between container managers: (i) increase or (ii) de-
crease a container (by some amount), and (iii) take it offline.
When invoked, the functions execute a protocol involving
rounds of control messages between the global manager,
local managers, and application executables. The EVPath
event library [16] is used to communicate these control
messages. EVPath allows for the creation of the overlays
typically found in monitoring infrastructures. In future work,
we are adding the transactional resilience support evaluated
as standalone code in Section IV, and in addition, we will
support interactive environments in which containers and
their analytics components can be launched in mid-run.

It is useful to further elaborate on container resource
increases and decreases. Increasing a container’s size means
that the container will occupy more cores or nodes. How
these nodes or cores are used depends on the container’s
component and its implementation. For example, for a
round-robin computational model, we can simply spawn
additional parallel instances of the component. For a parallel
component relying on MPI, however, increasing the con-
tainer size would require its complete teardown and restart-
ing a new instance with an increased number of MPI ranks.
This is in part due to the basic nature of MPI. However, there
are additional complications due to the interaction with the
batch scheduler environments on high end machines. For
example, on the Cray platforms we use for evaluation, the
MPI launch function ‘aprun’ has the limitation that it is not
possible to coalesce applications on the same node that were
launched from separate aprun commands. Programming
models like those proposed by Charm++, HabaneroC, and
the EVPath data streaming infrastructure used in our own
work on online data analytics [30], [31], [16] do not suffer
from these limitations.

Regardless of such implementation issues, there will be
some basic overheads of container resizing that arise from
the control protocol being used. To illustrate, Figure 3
depicts an example of the ‘increase’ protocol and the rounds
of control messages among the global manager, container
manager, and the component executables. The details of the
protocol go beyond the scope of this paper, but in summary,
the global manager asks the container to increase its size



LGS

Container 
Manager

Container 
Manager

Container 
Manager

R

R

R

R

R

R

W

W

W

W

W

W

1

7

8
9

10

2

3

6

4.b

4.a

5

Figure 3: Increase Container Protocol
by some number of nodes. The rounds of messages serve
to distribute end-point contact information and serve as
notification that certain actions have started or completed.
For the ‘decrease’ operations, the local manager also sends
a control message to its components asking them to pause
their DataTap writers in order to preserve correctness and
avoid loss of time steps while the downsteam container
reduces. Experimental evaluations in Section IV demonstrate
that these protocol requirements are possible without unduly
disturbing the I/O performed by a large-scale simulation.

Since staging area resources are limited, in order to
increase a container, we may first need to ‘steal’ resources
from another. The control protocol is similar to what is
depicted in Figure 3 except that a container is asked to
reduce its node footprint. It may also be that there are no
resources available to be traded across containers, and in that
case, the only remaining option is to take some non-essential
container ‘offline’. Container management implements this
option so as to guarantee that the stored data will be
labeled with its data processing provenance. This makes it
possible to keep track of which analytic operations have
been performed on the data and which operations need to
be performed in the future.

Moving a container offline also requires taking offline all
subsequent containers that depend on it. This information is
given to the global manager through a configuration file and
the global manager is responsible for properly carrying out
the necessary control actions. Our current implementation
simply has the global manager decreasing each affected
container’s resources to ‘0’. When that has been completed,
each component replica in the upstream container (still
online) has to switch its output method within ADIOS
to write to disk using the attribute system to mark the
provenance as mentioned before.

E. Container Monitoring

Online monitoring provides the different levels of man-
agement with the information needed for tasks like bottle-
neck detection and container health assessment. Leverag-
ing our previous work on monitoring [32], we implement
lightweight monitoring methods that create ‘dynamic over-
lays’ across the many nodes on the high end machine par-

ticipating in the I/O pipeline. We can vary (i) which metrics
are captured at the container boundaries of importance to
management and inside containers (as determined necessary
by local managers), (ii) how often they are captured, and
(iii) how they are processed and where such processing is
done. As explained in [32], such flexibility in monitoring is
important in order to minimize perturbation to applications
from the monitoring carried out by I/O containers.

This paper uses online container monitoring to detect
bottleneck components in I/O pipelines, which we determine
by finding the pipeline’s container with the longest average
latency. Latency is measured from the time the input data
from a timestep enters the component until it exits. We use
the EVPath library to transfer the monitoring messages.

IV. PERFORMANCE EVALUATION

The first set of measurements are micro-benchmarks that
outline the costs associated with the management operations.
After assessing these base costs, we next run experiments
that show the usefulness of the container approach. Using
LAMMPS and SmartPointer, we demonstrate intra-container
improvements through latency management actions by taken
by the container manager. We then evaluate end-to-end
improvements gained from global management of output
pipelines comprised of multiple components and their re-
spective containers. Specifically, we show the time for each
timestep to move through the pipeline drastically decreases.

A. Experimental Setup

The core I/O container experiments are run on NERSC’s
Franklin machine. It is a 9,572 node Cray XT4 machine
with quad core AMD ‘Budapest’ 2.3 Ghz processors, a
Portals Network, 38,288 total cores, 78TB of memory, and a
peak performance of 352 TFlops. We evaluate the container
implementation outlined in Section III-B1.

Our ongoing work investigating transactional techniques
for resilience in management operations is being conducted
on Sandia’s RedSky machine. Redsky is a capacity cluster
with a peak performance of 433.5 Tflops. It is a Sun
Blade center with Sun X6275 blades containing 2823 nodes
running Intel Xeon 5570 processors (8 cores each) with 12
GB of RAM per node and QDR InfiniBand arranged in a 3-
D toroidal mesh as the communication fabric. The prototype
transaction implementation uses two communication APIs:
Open MPI and Sandia’s NSSI [33].

B. Results

1) Protocol Overhead: Figures 4, 5, and 6 shows the
overheads associated with increase and decrease control
operations. Each consist of several rounds of messages,
as mentioned in Section III-D. Fig. 4 show the overheads
of an increase operation. The x axis represents the size
of the increase (increasing a container by 16 replicas, for
example). As the graph shows, the communication within a



Increase – no aprun 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 2 4 8 16 

Intra-Container 

Manager to Manager 

Replica Count 

Ti
m

e 
(s

) 

Figure 4: Time to Increase Container Size

Decrease 

Replica Count 

Ti
m

e 
(s

) 

0 

2 

4 

6 

8 

10 

12 

14 

1 2 4 8 16 

Messaging 

Command Execute 
Time 

Pause Time 

Figure 5: Time to Decrease Container Size

container during a resize is the dominant factor due to the
metadata exchanges needed to establish communication with
the new replicas. Overheads from point-to-point messages
between container managers and the global manager are
nearly negligible.

The current implementation of ‘increase’ is forced to use
the ‘aprun’ command commonly found on Cray high-end
machines. That cost has been factored out because it is not
inherent to how container management is done, rather, it
is an artifact of the particular OS ‘batch style’ scheduling.
The cost of ‘aprun’ is well known and varies drastically; in
our experiments we witnessed ‘aprun’ times between 3 to
27 seconds, completely drawfing all other measurement in
these microbenchmarks.

Fig. 5 shows the overheads associated with decreasing
a container’s resource footprint. In this particular case, it
involves the removal of some round-robin replicas. When
doing so, the largest source of overhead is waiting for the
replicas’ upstream DataTap writers to pause to avoid data
loss. This pause has little impact on data flow through
the pipeline, however, as DataTap allows for asynchronous
writes, the upstream analysis component can move on to its
processing of other time steps.

Fig. 6 presents preliminary results of our transactional
work providing resilience for management operations. A
full discussion of this research appears elsewhere [14], but
we feel it is important to highlight the costs associated
with performing transactions in these environments. The x-
axis represents the core ratio between writers and readers
(e.g., 512 writers to 4 readers) and the y-axis represents
the time taken to complete a transaction. Results show that

Core Ratio 

Ti
m

e 
(s

ec
on

ds
) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

256 - 2 512 - 4 1024 - 8 2048 - 16 

Finalize 

Req. Commit 

Data Output 

Init Sub Trans 

Init Trans 

Figure 6: Microbenchmark of Resilience Protocol Overhead
Table II: Experiment Data Sizes

Node Count Atoms Data size
256 8,819,989 67 MB
512 17,639,979 134.6 MB
1024 35,279,958 269.2 MB

the solution provides good scalability and on-going work is
making transactions cheaper without sacrificing resilience.

2) Using Containers to Improve Data Movement: We
demonstrate the utility of containerized execution with ex-
periments in which active management controls two metrics:
container latency and end-to-end latency. We run weak-
scaling experiments as the number of atoms LAMMPS
simulates and outputs directly affects the time required by
analysis routines. Table II shows the relation between node
count and data size (data size output per timestep).

Ti
m

e 
(s

) 

Timestep 

1024 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

Helper 

Bonds 

CSYM 

Figure 7: Events emitted for 256 simulation and 13 staging nodes

2048 

Timestep 

Ti
m

e 
(s

) 

0 

10 

20 

30 

40 

50 

60 

70 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 

Bonds 

Helper 

CSYM 

Figure 8: Events emitted for 512 simulation and 24 staging nodes

Container Latency. In Section III-E, we outline how con-
tainer latency can be used to determine a bottleneck in the
I/O pipeline. Active container management can control such
latencies and thus avoid such bottlenecks. For this scenario,



0 

50 

100 

150 

200 

250 

300 

350 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Helper 

Bonds 

CSYM 

Timestep 

Ti
m

e 
(s

) 

Figure 9: Events emitted for 1024 simulation and 24 staging nodes

LAMMPS output steps are generated more frequently than
normal, every 15 seconds, to show capabilities even under
stress. To avoid slowing down the pipeline, management
must ensure that each container in the I/O pipeline can
sustain this rate. Figure 7 shows the effects of increasing
the Bonds container, the bottleneck in this instance. Since
there are no spare resources to increase the Bonds container,
the global manager first issues a decrease to the LAMMPS
Helper container. Fortunately, LAMMPS Helper is fast
enough to not experience a significant slowdown from this
decrease. In other words, it is currently over-provisioned.
Upon completion of these management actions, as expected,
the latency for the Bonds container decreases. A transient
issue for some runs, however, was delay due to DataTap
pausing writers during a decrease. Fig. 7 shows a temporary
increase in latency in the Bonds container after increasing
its resources. This indicates the need for future research in
less aggressive consistency methods.

Figures 8 and 9 show the Bonds container converging to
the ideal rate. In fig. 8, there were insufficient resources
but the simulation completed before any queue overflows
occurred that would have blocked the pipeline. This was not
the case with Fig. 9, however, and the containers runtime
recognized the situation and moved the Bonds and Csym
containers offline. Both of these experiments had 4 spare
staging nodes at the start of the experiment.
End-to-End Latency. With this experiment, we evaluate
end-to-end latency for the I/O pipeline by measuring the
time it takes for each timestep to move through the pipeline.
This includes data transfer times between the containers and
compute times in containers. We use the same configuration
as in the experiment depicted in Figure 9. In figure 10,
despite increasing the bottleneck container, the end to end
latency is increasing as data is still spending a large amount
of time in the queue. Once the spare resources have been
used and the Bonds container is moved offline, we see a
sharp decrease in the end to end latency as the bottleneck
is pruned from the data path.

V. CONCLUSIONS AND FUTURE WORK

The I/O container abstraction and implementation devel-
oped in our work is important for several reasons. They make

0 

100 

200 

300 

400 

500 

600 

0 10 20 30 40 50 60 70 80 90 100 

End to End 
Observed Latency 

Timestep 

Ti
m

e 
(s

) 

Figure 10: End-to-End Latency

it possible to run dynamic online analytics and visualization
tasks for simulations executing on high end machines. For
such tasks, containers provide the functionality needed to run
them at supervised levels of performance, without requiring
tasks to be rewritten or reconfigured, and without requiring
end users to laboriously ‘size’ the resources these tasks
require. Using I/O containers also makes it easier to deploy
and run entire scientific analysis pipelines, guided by end-to-
end global properties like the delay science users experience
between when simulation output occurs to when analyzed
data is presented.

The current implementation of I/O containers uses a
lightweight monitoring infrastructure to gather online per-
formance information and hierarchical methods to make
distributed management decisions. Its efficient management
protocols are shown able to manage I/O pipelines effec-
tively and in ways that improve analytics performance.
Initial results with generalized protocols providing resilient
management operations, using transactional constructs, are
shown to give managers consistent views of current I/O
pipeline state and resources.

Further issues driving our future work include the follow-
ing: How to support stateful rather than stateless analytics
methods; how to deal with more complex I/O pipelines;
and how to place and co-locate containers on the petascale
machine to reduce simulation-to-analytics data movement
and taking into account node and interconnect topologies.

VI. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and
R. Samtaney, “Grid-Based parallel data streaming imple-
mented for the gyrokinetic toroidal code,” in SC 2003. IEEE
Computer Society, 2003.



[2] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam,
“Gyro-Kinetic simulation of global turbulent transport prop-
erties in tokamak experiments,” Physics of Plasmas, vol. 13,
no. 9, p. 092505, 2006.

[3] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,
and F. Zheng, “Datastager: scalable data staging services for
petascale applications,” Cluster Computing 2010, 2010.

[4] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and
R. Samtaney, “Grid-based parallel data streaming imple-
mented for the gyrokinetic toroidal code,” in SC, 2003, p. 24.

[5] H. Wang, S. Parthasarathy, A. Ghoting, S. Tatikonda,
G. Buehrer, T. M. Kurç, and J. H. Saltz, “Design of a
next generation sampling service for large scale data analysis
applications,” in ICS, 2005.

[6] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an in-
teraction and coordination framework for coupled simulation
workflows,” in HPDC. ACM, 2010, pp. 25–36.

[7] M. Hereld, M. E. Papka, and V. Vishwanath, “To-
ward simulation-time data analysis and i/o acceleration on
leadership-class systems,” in IEEE Symposium on Large-
Scale Data Analysis and Visualization, 2011.

[8] M. D. Beynon, R. Ferreira, T. M. Kurç, A. Sussman, and
J. H. Saltz, “Datacutter: Middleware for filtering very large
scientific datasets on archival storage systems,” in IEEE
Symposium on Mass Storage Systems, 2000, pp. 119–134.

[9] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky,
R. Latham, R. B. Ross, and N. F. Samatova, “Compressing
the incompressible with isabela: In-situ reduction of spatio-
temporal data,” in Euro-Par (1), 2011, pp. 366–379.

[10] J. F. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Ko-
rdenbrock, K. Schwan, and M. Wolf, “Managing variability
in the io performance of petascale storage systems,” in SC,
2010, pp. 1–12.

[11] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf,
“Predata- preparatory data analytics on peta-scale machines,”
in IPDPS, 2009.

[12] F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf,
S. Klasky, and N. Podhorszki, “In-situ i/o processing: A case
for location flexibility,” in Parallel Data Storage Workshop
(PDSW), 2011.

[13] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable,
metadata rich io methods for portable high performance io,”
in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, may 2009, pp. 1 –10.

[14] J. Lofstead, J. Dayal, K. Schwan, and R. Oldfield, “D2t:
Doubly distributed transactions for high performance and
distributed computing,” Cluster Computing: To Appear, 2012.

[15] M. Wolf, Z. Cai, W. Huang, and K. Schwan, “Smartpointers:
personalized scientific data portals in your hand,” in SC, 2002,
pp. 1–16.

[16] G. Eisenhauer. Evpath. [Online]. Available:
http://www.cc.gatech.edu/systems/projects/EVPath/

[17] K. Spafford, J. S. Meredith, J. S. Vetter, J. Chen, R. W. Grout,
and R. Sankaran, “Accelerating s3d: A gpgpu case study,” in
Euro-Par Workshops, 2009, pp. 122–131.

[18] E. S. H. J. et. al, “CTH: A software family for

multi-dimensional shock physics analysis,” in Proceedings
of the 19’th International Symposium on Shock Physics,
R. Brun and L. Dumitrescu, Eds., vol. 1, Marseille,
France, Jul. 1993, pp. 377–382. [Online]. Available:
http://sherpa.sandia.gov/9231home/pdfpapers/issw.pdf

[19] J. R. Lange, K. T. Pedretti, T. Hudson, P. A. Dinda, Z. Cui,
L. Xia, P. G. Bridges, A. Gocke, S. Jaconette, M. Leven-
hagen, and R. Brightwell, “Palacios and kitten: New high
performance operating systems for scalable virtualized and
native supercomputing,” in IPDPS, 2010, pp. 1–12.

[20] H. Nasgaard, B. Gedik, M. Komor, and M. P. Mendell, “Ibm
infosphere streams: event processing for a smarter planet,” in
CASCON, 2009, pp. 311–313.

[21] A. L. Varbanescu, A. M. Molnos, and R. van Nieuwpoort,
Eds., ISCA 2010 International Workshops, WIOSCA.

[22] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: a
platform for fine-grained resource sharing in the data
center,” in NSDI 2011, ser. NSDI’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 22–22. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972488

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the art of virtualization,” in SOSP, 2003, pp. 164–177.

[24] C. A. Waldspurger, “Memory resource management in
vmware esx server,” in OSDI, 2002.

[25] M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan,
“Service augmentation for high end interactive data services,”
in CLUSTER, 2005, pp. 1–11.

[26] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit:
A language for streaming applications,” in CC, ser. Lecture
Notes in Computer Science, R. N. Horspool, Ed., vol. 2304.
Springer, 2002, pp. 179–196.

[27] D. Rosu and K. Schwan, “Faracost: An adaptation cost model
aware of pending constraints,” in IEEE Real-Time Systems
Symposium, 1999, pp. 224–233.

[28] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper:
wait-free coordination for internet-scale systems,” in Proceed-
ings of the 2010 USENIX conference on USENIX annual
technical conference.

[29] J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation
of leading hpc i/o performance using a scientific-application
derived benchmark,” in Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, ser. SC ’07. New York, NY,
USA: ACM, 2007, pp. 10:1–10:12.

[30] G. Zheng, L. Shi, and L. V. Kalé, “Ftc-charm++: an in-
memory checkpoint-based fault tolerant runtime for charm++
and mpi,” in CLUSTER, 2004, pp. 93–103.

[31] R. Barik, Z. Budimlic, V. Cavé, S. Chatterjee, Y. Guo, D. M.
Peixotto, R. Raman, J. Shirako, S. Tasirlar, Y. Yan, Y. Zhao,
and V. Sarkar, “The habanero multicore software research
project,” in OOPSLA Companion, 2009.

[32] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and
M. Wolf, “A flexible architecture integrating monitoring and
analytics for managing large-scale data centers,” in ICAC,
2011, pp. 141–150.

[33] N. S. S. Interface, “https://software.sandia.gov/trac/nessie/.”


