
D2T: Doubly Distributed Transactions for High
Performance and Distributed Computing

Jai Dayal1, Jay Lofstead2, Karsten Schwan1, Ron Oldfield2

1CERCS, Georgia Institute of Technology, 2CSRI, Sandia National Labs.

ABSTRACT
The Doubly Distributed Transaction (D2T) protocol offers
a mechanism for a collection of clients and a separate col-
lection of servers to orchestrate an action with semantics in-
spired by database ACID-transactions. Our previous work
showed good potential, but suffered from known limitations
due to the client and server side split coordination. The ini-
tial performance of this approach was acceptable and showed
potential for good scalability. However, the communication
bottleneck at scale between the client side coordination and
the server side coordination would be unworkable. In this
poster, we address these limitations and introduce three new
technologies: 1) A client-side coordinator only optimization;
2) Data storage requirements and evaluation for a example
transaction aware system; and 3) a metadata system require-
ments and evaluation for supporting transaction control over
entries. Additionally, we were able to find many redundant
or unneeded messages in the first version of the protocol that
we removed without reducing the offered resilience. Experi-
mental results show that with our refinements, we can attain
the same level of transactional guarantees with a measurable
decrease in overhead costs.

1. INTRODUCTION
As scientific applications scale towards exascale, they will

incorporate more complex models that have previously only
been run as separate applications. For example, in fusion
science, simulation of the edge of the plasma [2] and the in-
terior of the plasma [5] are currently separate simulations.
To have a more complete, accurate model for a fusion re-
actor, these components will need to be tightly coupled to
share the effects between the two models. The CESM cli-
mate model [4] is similar in that it incorporates atmosphere,
ocean, land surface, sea ice, and land ice through a coupling
engine to manage the interactions between each of these dif-
ferent systems yielding a more accurate model of global cli-
mate. In most cases, these and other scientific applications
are part of larger offline workflows that process the output
written to storage in phases that ultimately yields insights
into the phenomena being studied. Current work to enable
these coupling and workflow scenarios are all focused on the
data issues to resolve resolution and mesh mismatches, time

Copyright 200X Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

scale mismatches, and simply making data available through
data staging techniques. In most of these cases, each of the
components are run using a separate execution space for
fault isolation and to aid in scalability.

Our initial implementation employed separate coordina-
tion systems for the client side and the server side. This
has several limitations. First, the server side must listen for
messages as well as process them, perhaps in complex ways.
Using two different mechanisms such that one is capable of
discovering an external message, such as RPC style systems
like the NSSI system, and another like MPI for coordina-
tion among the server processes imposes a disconnect and
introduces delays as the there needs to be some coordination
between the threads that are listening for messages coming
over different APIs and paradigms (RPC vs. MPI messag-
ing). Second, the single point of communication between the
client side and server side is all but guaranteed to incur a
bottleneck that will prevent the level of scalability we desire.
Third, the server side processes must be made aware of the
transaction protocol to operate properly.

We addressed these problems by: 1) Merging into the sub-
coordinators on the client side the server affected; 2) Elim-
inating the need to have multiple messaging standards to
support server-side functionality; 3) Abstracted the proto-
col to eliminate the need of the server to fully incorporate
the transaction protocol affording integrating a variety of
off-the-shelf products; and 4) Use message piggybacking to
reduce the volume of messages without reducing resilience.

The D2T protocol aims to offer full ACID-style guarantees
for the encapsulated operations such as data movement or
system reconfiguration for fault tolerance and load balanc-
ing. While this is certainly possible with adequate hardware
particularly to support the durability guarantee, this initial
work shows that such a system can be built that supports
most of the ACID-style guarantees with current hardware,
what the performance impact will be, application coding
implications, and begin to address the scalability challenges
so that it is applicable for exascale-sized platforms. More
specifically, D2T can address both the code coupling/online
workflow/data staging as well as the fault tolerance/system
reconfiguration scenarios.

While it is true that for many high transaction volume
environments, ACID-style transactions can lead to scalabil-
ity problems catalyzing the explosive growth of NoSQL style
data stores. The D2T techniques are intended for a differ-
ent environment than BASE properties can support. In our
scenario, we are focused on supporting online workflows and
other high performance and distributed computing opera-

tions. For these scenarios, eventual consistency is not always
sufficient. Throughput in the online workflow is only pos-
sible with guarantees about data completeness and correct-
ness. The BASE properties are insufficient for maintaining
this throughput.

2. RELATED WORK
The concept of distributed transactions has been around

for decades. We are extending this technology to address
distributed clients working in concert. While this is not
critical for the core database area, is crucial for HPC ap-
plications given the massively parallel nature of the modern
HPC environment. ZooKeeper [1] and other Paxos [3] imple-
mentations have a superficial similarity to our D2T protocol
in that they provide the consistency and synchronization
mechanisms for messaging to a collection of servers from a
distributed set of sources. Under the hood, Paxos is solely
1xN with an eventual consistency model. The inherent as-
sumption that an update or insert originates from a single
source limits the applicability of the protocol for this envi-
ronment. GridFTP and Sinfonia offer related functionality,
but either do not offer the same levels of guarantees or is
limited to a 1xN semantics inappropriate for the HPC envi-
ronment.

3. THE D2T PROTOCOL
The D2T protocol provides the necessary extensions to

traditional distributed transactions to afford extensions to
distributed clients as well as distributed servers, hence the
doubly distributed transactions. (Figure included in final
poster.)

In this edition of the protocol, we identified that several
messages were unneeded. First, in the first version of the
protocol, we had messages that were used to signify the end-
ing and beginning of phases. After evaluating the protocol,
we could see that the message ending one phase and a sep-
arate message starting the next phase was redundant; now
the ending of one phase is implicit with the start of another.
Resiliency is not lost here because if not all clients agree to
move to the next phase, we can consider this to be a failure.

In the first version of the protocol presented last year,
we relied on a server side coordinator to gather the votes for
each server and inform the client coordinator of the collective
vote (i.e., abort or pre-commit). We noticed that this was
not needed because each client using a server can determine
if the operation completed successfully. For example, if the
clients are writing to files, the clients themselves can re-
read the contents to verify correctness. Additionally, many
services return error or success codes. With this insight,
servers do not need to vote amongst themselves and can
be completely agnostic to the transactional protocol which
makes integration of the protocol into other services easier.

4. EVALUATION
These tests are performed on the RedSky Sun blade sys-

tem at Sandia. Our protocol is implemented solely with MPI
as we no longer require the protocol to communicate across
application boundaries.

We conduct three sets of experiments. The first set of ex-
periments are microbenchmarks that capture the overheads
associated with executing our optimized protocol. We also
compare these results with the results from the previous

edition to quantify the improvements with our optimized
protocol. The results show that both pruning the volume of
messages and removing the need communicate across appli-
cation boundaries during the protocol drastically lower the
time needed to execute the protocol (results included in the
final poster).

The next sets of experiments make use of the protocol for
real applications. In the first application, transactions are
used to provide clients with transactional guarantees when
performing operations on a metadata service. The second
application uses the transaction protocol when operating on
a distributed datastore that also aims to provide clients with
durability by replicating the data. In both of these exam-
ples, we also introduce failures and show that the transaction
protocol can inform the clients of these failures, and that
overheads induced only minor overheads to the applications
(Results and figures included in final poster).

5. CONCLUSION
In this paper we expanded upon our original implementa-

tion of D2T and made several optimizations that will allow
for improved scalability and greater applicability to a wider
array of services. Our results and integration with real ex-
amples validate our approach and show our techniques al-
low us to get better scalability without loss of resilience.
Our current and future work is integrating our transaction
protocol into a runtime management system for online ana-
lytics.

6. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

7. REFERENCES
[1] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

Zookeeper: wait-free coordination for internet-scale
systems. In USENIX ATC, USENIXATC’10, Berkeley,
CA, USA, 2010. USENIX Association.

[2] S. Ku, C. S. Chang, M. Adams, E. D. Azevedo,
Y. Chen, P. Diamond, L. Greengard, T. S. Hahm,
Z. Lin, S. Parker, H. Weitzner, P. Worley, and D. Zorin.
Core and edge full-f ITG turbulence with self-consistent
neoclassical and mean flow dynamics using a real
geometry particle code XGC1. In Proceedings of the
22th International Conference on Plasma Physics and
Controlled Nuclear Fusion Research, number
IAEA-CN-165/TH/P8-40, Geneva, Switzerland, 2008.

[3] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16, May 1998.

[4] NCAR and UCAR. Community earth system model.
http://www.cesm.ucar.edu/models/cesm1.0, 2012.

[5] W. X. Wang, Z. Lin, W. M. Tang, and W. W. Lee.
Gyro-Kinetic simulation of global turbulent transport
properties in tokamak experiments. Physics of Plasmas,
13(9), 2006.

	Introduction
	Related Work
	The D12T Protocol
	Evaluation
	Conclusion
	Acknowledgements
	References

