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Abstract—Several efforts have shown the potential of using
additional compute-area resources to enhance the IO path to
storage. Efforts like data staging, IO forwarding, and similar
techniques can accelerate IO performance and reduce the impact
of IO time to a compute application. Hybrid staging enhanced
this path by adding processing functionality to locations along the
data path to storage. While these efforts have been effective, they
have taken a somewhat limited view of the potential benefits using
some additional compute resources can offer both to enhance a
compute application as well as to offering a way to exploit HPC-
style resources for non-traditional tasks.

Over the last few years, we have been experimenting with
the potential for other sorts of activities using a staging style
approach to add or enable new functionality. The efforts in
this area have yielded a collection of small projects that yield
some insights into both the potential and limitations of this
approach for both achieving exascale computing and for enabling
alternative uses for HPC resources.

I. INTRODUCTION

The growth of commodity clusters and Big Data have
yielded a desire to use the compute capacity of these machines
to try to address massive data analysis challenges more effi-
ciently. Connecting these resources with the users to perform
analysis tasks requires a bit of a different infrastructure. End
user machines will have to have connections into the cluster
compute area with a two-way communication channel for data
movement and processing instructions. These sorts of connec-
tions are typically difficult. Direct connections are prevented
to avoid the jitter involved with the additional network traffic.

For both traditional data staging and these other needs
outlined above, using a portion of a cluster can either enable
different processing or even offer a connection between the
HPC resources and other systems creating a hybrid offering
new functionality. With these scenarios in mind, we chose
to explore different sorts of uses for these resources and the
supercomputer.

To make the connection, we used the Network Scalable
Services Interface (NSSI) [1] developed by our group as part
of the Lightweight File Systems project (LWFS) [2]. NSSI
offers an rpc-style mechanism to simplify connecting resources
on Cray SeaStar and Portals [3], [4], InfiniBand [5], and the
new Cray Gemini [6] interconnects. Our strategy was to re-
implement the communication API used in the application,
relink, and then the new functionality would be available.
For scenarios that work in the other direction, the network
transport-level support offers an opportunity to connect outside
accessible nodes with the compute area.

The examples we demonstrate start with a more traditional
staging example first described at PDSW @ SC 11 [7], but
with many of the questions left open at that time answered.
In this case, rather than just outsourcing the data movement
to a staging area, as many existing data staging examples
do, we also moved the communication phase of the IO
operation as well. Next, we look at enabling an informatics
application by running data analysis operations in the compute
area of an HPC resource. The challenge with this scenario is
connecting to the backend data store to both pull data into the
compute area and also push results back into the data store.
We developed a service affording database connectivity from
within the compute area to areas outside the HPC machine.
We then show two examples that use the HPC resource to
support an external application. We evaluate both multi-lingual
document clustering and streaming analysis of network traffic
data. In the document clustering case, we bring in the corpus
and process in parallel to support an end user’s interactive
use. Finally, the streaming analysis of network traffic data uses
the HPC resource to do new real-time analysis of data about
network streams.

In all of these cases, we leverage the core idea of data
staging, i.e., the use of additional resources to enhance some
core computation through the use of some connecting code,
in ways very different from existing work. Some custom
solutions somewhat similar to these may have been built
historically for custom hardware and application platforms,
but none have aimed to use these general purpose resources
for these different scenarios.

The remainder of this paper is organized as follows. Sec-
tion II presents a short overview of the related work. We
introduce the NSSI protocol central to all of these examples
in Section III. We next present the three examples motivat-
ing unconventional use of data staging areas in Section IV.
Section V offers conclusions and future work.

II. RELATED WORK

Data staging, or more generally using a small amount of
additional resources to accelerate IO in some fashion, has been
in use for many years. We first posited this approach in 1996
to help with imaging for a Seismic modeling application [8].
In that work, by adding 10% more nodes, a 30% performance
improvement was achieved. It hosted FFT operations to pro-
cess the data and used asynchronous IO to overlap the IO with
computation.
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More recently, the use of an IO Delegate and Caching
System [9] showed the performance gains for collecting the
IO requests at the IO layer. This system cached data for future
requests and aggregated small requests into larger ones to
improve performance.

Similar to this effort is the IO Forwarding Scalability
Layer [10]. It added some scheduling of IO requests to try
to manage the impact of IO operations on the file system.
These optimizations focused on the path between the staging
nodes and the file system.

The DataTap [11] system and the follow-on work has
focused on how to effectively leverage asynchronous IO to
data staging areas with the observation of interference effects
that IO-related data movement may have with application-
related communication tasks. This work was motivated by the
observation that naive use of asynchronous IO can increase
the total run time of an application by as much as 30% rather
than reducing the total time by eliminating nearly all of the
time previously spent performing IO.

More richly, the PreDatA [12] project has demonstrated
that hosting functionality along this IO path has different
performance characteristics depending on where the operation
is placed and the kind of operation. It also shows that using
these sorts of operations in the IO path can still improve
the total wall clock time while massaging data into a more
desirable form when it reaches disk, even when accounting
for the additional resources used for the data staging services.

The DataSpaces [13] project has focused on using data
staging as a way to perform code coupling operations. It has
focused on using asynchronous IO to move data into a staging
area and then having a different application retrieve some
portion of that data at a future time according to its need.

A recent effort called Glean [14] from Argonne is a start
towards both accelerating IO performance and integrating
functionality, such as analysis routines, at the right place trans-
parently. It is very similar to PreDatA, but extends the location
of operations to potentially beyond the current machine.

All of these efforts have been very strictly focused on using
a data staging approach as a way to accelerate the IO path
while offering some level of additional functionality. None of
these efforts have attempted to use the idea of adding resources
for alternative purposes, along with a transparent interface, to
do different sorts of operations and integrations.

III. THE NETWORK SCALABLE SERVICE INTERFACE

NSSI offers an RPC-like interface that can operate over
a variety of network layers affording the opportunity to
communicate between applications within the compute area
of an HPC resource and between an HPC application in the
compute area and a service node that has access to resources
external to the HPC machine. This connectivity opportunity
affords the different examples demonstrated in this paper.
Rather than require replacing an existing API with a new API
or operating at a lower layer introducing a loss of opportunities
and information, NSSI uses rely on maintaining the API and
replacing the implementation with link-time compatibility. Re-
implementing the API does have limitations, but it has proven

to offer a considerable amount of functionality. An illustration
of how this replacement would work is in Figure 1.
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Fig. 1. Example of How NSSI is Incorporated With PnetCDF

Other uses of NSSI, including some of those in this paper
use a slightly different approach, but still follow the same spirit
of finding a way to minimally insert a new implementation
that affords connecting with different resources, potentially
external to the current machine.

IV. UNCONVENTIONAL DATA STAGING EXAMPLES

We outline three different categories of unconventional uses
of data staging technology. These approaches expand the
functionality of HPC resources and incorporate HPC resources
into workflows that typically cannot leverage these resources.
This connection is typically due to both the limited external
interface between the compute area of the machine and the
external environment and the lack of deployable algorithms
into the environment due to this limited accessibility.
Experimental Setup The experiments are performed on a
variety of different machines. We first describe the machines
used for each experiment followed by the specifications for
these machines. Two of these machines, JaguarPF and Red
Storm have since been decommissioned.

For the first example of moving communication require-
ments along with data, the initial tests are performed on
JaguarPF at Oak Ridge National Laboratory. The subsequent
tests are performed on RedSky capacity machine at Sandia
National Laboratories.

For the second example of informatics on HPC resources,
the Red Storm machine and a Netezza appliance are employed.

For the third example of streaming data analysis, Red Storm
is employed.

JaguarPF was a Cray XT5 containing 18,688 compute nodes
in addition to dedicated login/service nodes. Each compute
node contains dual hex-core AMD Opteron 2435 (Istanbul)
processors running at 2.6GHz, 16GiB of DDR2-800 memory,
and a SeaStar 2+ router. The SeaStar 2+ routers are connected
in a 3D torus topology for scalability. The resulting partition
contains 224,256 processing cores, more than 300TiB of
memory, over 6 PB of disk space, and a peak performance
of 2.3 petaflop/s. For all tests, Spider, the ORNL shared
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scratch space Lustre file system, is employed. The peak IO
performance for Spider’s widow2 or widow3 partition used in
this evaluation from JaguarPF is around 60 GiB/sec for writing
in parallel to the 336 storage targets.

Red Storm was a Cray XT3 located at Sandia. At the time of
testing, Red Storm had 12960 dual-core compute nodes. The
compute nodes are arranged in a regular three-dimensional
grid, connected with a hypertorus topology. Each node has
an interconnect with a custom Cray SeaStar networking chip
and a dedicated PowerPC chip. The interconnect is coupled
to the processor using a HyperTransport link that has a
theoretical (excluding wire protocol overhead) bandwidth of
2.8GB/s [15]. Each of the six links from each node can support
2.5GB/s, after protocol overheads. Low-level software access
to the interconnects is provided through the Portals library [4],
which provides a connectionless RDMA-based interface.

RedSky is an unclassified capacity machine. It is a Sun
Blade center with Sun X6275 blades containing 2823 nodes
running Intel Xeon 5570 processors (8 cores each) with 12
GB of RAM per node and QDR InfiniBand arranged in a 3-D
toroidal mesh as the communication fabric.

A. Moving Communication Along With Data

Our first example is most simialr to typical data staging,
but moved more than just the IO operations. In our previous
workshop paper [7], we showed the initial results suggesting
the advantage of shifting more than just the IO operation to
the staging area. The base results from the JaguarPF machine
at Oak Ridge are reproduced in Figure 2 for reference with the
discussion below. As is our pattern with NSSI, the PnetCDF
API is re-implemented to move the call and associated data to
the staging area before any coordination among participating
processes occur. This shifts the communication phase of two-
phase IO to the staging area. Traditionally, systems like the IO
Forwarding Scalability Layer just shift the actual IO system
calls leaving the communication phase on the compute nodes.
In the results in Figure 2, a single staging node with 12
processes (1 per core) is used. The two techniques of either
caching individual IO requests or aggregating IO requests
into larger requests are consistently better performance by a
percentage that exceeds the compute job cost of 1 additional
node. The direct calls simply pushes the call to the staging area
and executes it synchronously. The lack of a real difference
between the aggregating and the caching performance was left
as an open question. Further experimentation, discussed below,
has revealed the reason that aggregating to form fewer, larger
IO calls did not yield better performance than simply caching
requests and executing them in a batch. For all of the tests
performed in this section, at least four repetitions of each test
is performed and the best time for each test is selected.

The additional experimentation is done on the RedSky
machine at Sandia yielding the results in Figures 3, 4, 5 and
6. Figures 3 and 5 are comparable with JaguarPF in that they
also use a single staging server while Figures 4 and 6 show
the same tests performed with N staging servers, 1 staging
node per 1024 compute processes. In both cases, one staging
process is used for each of the 8 cores on each staging node.

The results seen on JaguarPF were considerably slower overall
than those on the RedSky machine. After consulting with the
team at Oak Ridge, we determined that the root cause of the
problem was one of two possibilities. The first possibility was
due to the Spider file system using hardware RAID while the
initial tests on RedSky used a local only software-based RAID
file system called scratch. A second set of tests were performed
on a hardware RAID file system gscratch when the scratch file
system was decommissioned. Unfortunately, scratch was de-
commissioned before all testing could be completed resulting
in the incomplete results presented in Figures 3 and 4. The
initial guess based on the system configuration suggested it
is the difference between using shared locks for all processes
on a node, such as scratch was configured, and not sharing
locks, as the Spider file system at Oak Ridge is configured. All
three are Lustre file systems. Spider is shared across the entire
leadership computing facility at Oak Ridge making it heavily
used from a variety of different machines. The scratch file
system on Red Sky is a local only file system while gscratch
is shared among several machines at Sandia.

The second set of results refines the understanding by evalu-
ating against the hardware RAID file system gscratch, but with
shared locks for all processes on each node. The performance
of the staging results for both 1 and N staging servers on
both file systems on RedSky are essentially identical. The
performance of using 1 staging node on JaguarPF showed a
considerably different picture. The performance on JaguarPF
with 1 staging server is 10× worse than either file system on
RedSky. This suggested strongly there is a very large penalty
for using individual locks for all processes. By looking at the
PnetCDF performance across the three sets of tests, broader
results appear. The performance on the shared file system
gscratch on RedSky is about 3× worse than the local only
scratch file system. The performance of PnetCDF on JaguarPF
is essentially the same as the gscratch performance on RedSky,
also a shared file system.
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Fig. 2. Writing Performance on JaguarPF with One Staging Node (12
Processes)

Since JaguarPF is a capability-class machine, data security
is seen as paramount. The possibility of corruption by shar-
ing locks between processes on a single node is considered
too high of a risk. The performance penalties are seen as
acceptable compared with the cost of the computation itself.
On RedSky, the old file system was a local only, software-
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Fig. 3. RedSky scratch Results (1 staging server)
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Fig. 5. RedSky gscratch Results (1 staging server)

Fig. 6. RedSky gscratch Results (N staging servers)

based RAID system where file system locks are shared by
all processes on a single node. This reduces the contention
between processes by trusting them to safely share access to
the file system. RedSky is a capacity machine not intended for
production scientific runs affording the less strict data security
semantics. The last configuration is the current RedSky setup
with the shared, hardware-based RAID system gscratch with
the locking configured like the software RAID system.

Overall, these tests have yielded the following discoveries:
• Base PnetCDF performance is roughly the same on both

shared file systems. The base-line performance on the
local-only software RAID was a factor of 3×−4× better.

• Hardware vs. software RAID staged performance is
roughly the same on RedSky. The 5120 process results
for the hardware RAID with a single staging server is
an aberration compared with the other results and is
likely due to the intermittent, but regular problems the
file system seems to suffer.

• Staged performance between RedSky and JaguarPF is off
by an order of magnitude roughly. RedSky, no matter
the file system used, had roughly a 10× performance
advantage. With how busy the Spider file system is at Oak
Ridge and the intermittent performance variability [16],
this shows the advantages of having a less busy file sys-
tem for performance. With the file system using rotational
media, this result is not too surprising. The surprise is the
degree of difference.

While these results are strong enough to override some
complicating factors, discussion of known potential impacts
are discussed below.

While JaguarPF has reasonably consistent performance, the
variability in the file system performance of Spider is well
documented [16]. This variability affects the consistency of
these results. While this variability is known, RedSky can
be even more variable. Because RedSky is not intended as a
capability platform, it is frequently used to test new algorithms
and parallelization techniques that can detrimentally affect the
performance of other applications running on the machine
concurrently. With seemingly regularity, runaway processes
can cause the file system to suffer very poor performance until
the culprit processes are killed. By using the best time rather
than an average of some sort, we do our best to control for
the variability introduced by both platforms.

Another wrinkle in these results is that they do not fully
control for placement of processes on compute nodes. The
RedSky job scheduler slurm, by default, does not assign
processes in a fixed ordering attempting to pack nodes. Instead,
there is a somewhat random distribution of the processes
across those assigned to this compute job. These results do
partially control for placement by running the tests multiple
times and using the best results from each set. Ongoing work
has observed that sub-optimal placement can have a significant
impact on the node-to-node performance.

B. Informatics on HPC Resources
Traditionally, HPC resources have focused on supporting

scientific applications with little thought to using these expen-
sive resources for a broader variety of applications.
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In this section, we discuss two different applications related
to informatics that leverage HPC resources. For the first, the
HPC resources parallelize data processing tasks for a data
warehouse appliance. For the second, this model is extended to
incorporate the HPC resource into an interactive visualization
system for exploring the relationship between various docu-
ments. Both of these examples share an offloading of once
serial computation onto a parallel resource to accelerate the
computation.

1) Connecting to Informatics Resources: Informatics ap-
plications offer a new opportunity to leverage parallel com-
putation to accelerate data processing tasks. The challenge
is getting the data into the compute area from outside the
HPC resource. Mathematical operations like mean, variance,
skewness, kurtosis, the covariance matrix and its Cholesky
decomposition can be done piecemeal and the end result
assembled by aggregating the local values and completing the
computation. For this scenario, it is necessary to provide a
way to retrieve data into the compute area and then write the
results back to the data store.

An appliance like a Netezza data warehouse engine is
frequently used to store data used by informatics applications.
The derived values that help offer insights into the entire data
set must be generated and stored for frequent use. To leverage
the HPC resource, a two-way connection between the Netezza
appliance and the HPC code must be created. This connection
will have to provide the following functionality:

1) Bridge the gap between the compute area and the
network outside the HPC resource.

2) Provide an interface capable of extracting the data from
the appliance into the compute area.

3) Assert the results back into the appliance in a way that
appropriately links it to the raw data.

Accomplishing these ends requires working with the avail-
able interface to Netezza. There are three interface options
available, but only the ODBC interface offers remote access
to the device from another machine. For operations on the
device, a SQLite facility that processes operations through
the SQL interface based on a list of commands in a file
is simple and offers relatively good performance using the
industry standard SQL language to encode the commands. The
custom NZLoad facility offers higher performance than the
SQLite interface and is intended for bulk loading of data into
the device avoiding the overhead of SQL processing.

Working with the ODBC interface is fairly straightforward,
but requires a direct network connection between the two sides
of the API call. To make a connection between the compute
area and the service nodes capable of connecting via ODBC,
the Titan [17] component of VTK, which has an ODBC
mode, is used. A staging area hosted on the service nodes
receives the calls from the re-implemented Titan interface
using NSSI underneath. From the staging area, the native
implementation is invoked directly for ODBC calls on the
Netezza interface. Any return values generated by the Netezza
are routed back through NSSI to the compute area caller
affording an indirection that bridges the barrier between the
compute area and the outside network. A detailed description
of this architecture was presented previously [18], but without

any evaluation of the available performance. Since that time,
an evaluation has been performed and is shown in Figure 7.
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The network link between RedStorm and the Netezza ap-
pliance is 1Gb/s. This evaluation shows three different perfor-
mance profiles for the same operations. The first demonstration
of these results is the capability of accessing the Netezza
appliance from the compute area of Red Storm. While the per-
formance of this ODBC interface seems poor, it is attributable
to how it was used. In this case, a naive use of the API that
forces a complete transaction for each insert or select operation
was used. ODBC does offer higher performance options, such
as combining several commands into a single transaction as
well as bulk loading options. The full implications of these
alternative options were not understood until after access to the
Netezza device had been discontinued preventing tests using
the ODBC interface more efficiently. Overall, the performance
of the ODBC interface using it more efficiently should be more
similar to the SQLite performance.

While this ODBC interface affords a generic interface
usable for a variety of applications, the performance is not
as good as custom methods, not surprisingly. However, the
availability of this functionality outweighs the apparent per-
formance penalty. Native, proprietary methods will generally
offer higher performance at the cost of development time. In
this case, any scenario that requires an ODBC interface can
now be easily incorporated into the compute area of an HPC
resource without significant additional programming efforts.

One alternative that can also be explored using this model
includes exploiting the SQLite interface. The idea with this
approach is to maintain the ODBC interface in the compute
area, but change how the staging area works. For this case,
for many scenarios, caching a collection of SQL commands
into a buffer that is then sent to a local process on the Netezza
appliance. That local process can then use this buffer as input
for the SQLite interface. This is not applicable to all scenarios
because of the potential sequence of calls, such as a select,
insert, select, update sequence where the insert and update
rely on values retrieved from the select commands. For cases
where a bulk insert or a series of selects are being performed,
these can be cached and handled in bulk through the SQLite
interface.

Ideally, if a local process on the Netezza were possible,
the Titan/NSSI/ODBC interface could be coded to extract
the data from the ODBC calls into the proper format for
the NZLoad interface and take advantage of the performance
possibilities. Like the SQLite interface described above, this is
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limited to a subset of possible operations limiting its use. For
scenarios where this is applicable, as the evaluation shows, the
performance benefits can be substantial.

2) Leveraging HPC for Document Clustering and Interac-
tive Visualization: A more complex interaction between an
HPC resource and external resources can be seen in the docu-
ment clustering example. Document clustering is a technique
that analyzes a collection of documents to determine a relative
“closeness” between document pairs. Latent Morpho-Semantic
Analysis (LMSA) [19] is a newer technique to generate these
clusters, but with the ability to better handle morphologically
complex languages such as Arabic. Only through exploiting
large computational resources can these sorts of algorithms
scale to handle millions of elements.

Architecturally, Red Storm is used for the mass computa-
tion, the clusters for the visualization and interactive controls,
and data warehouse appliances for database functionality (such
as a Netezza appliance) is illustrated in Figure 8. At a detail
level, LMSA is used for dataset generation, the Trilinos [20]
library is used for the general computation, Titan [17] performs
the visualization and NSSI glues the systems together.
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For this scenario, the data staging services provides the
connectivity between the HPC compute resource, the data
warehouse’s database functionality, the visualization platform,
and the end user’s terminal to view the rendering and ma-
nipulate how and what portion of the data set displayed.
Leveraging the HPC resources yield a tremendous time to
solution advantage over using a stand-alone workstation for
the entire system. The use of NSSI to replace the existing data
access/movement APIs affords a transparent way to connect
all of these resources by affording moving components onto
different platforms more suited to scaling the workload.

To test the effectiveness of this architecture, public domain
copies of the Bible in five different languages is processed to
demonstrate the clustering of all of the different language ver-
sions of the same source document. A performance evaluation
is shown in Figure 9 and the workstation view of the clustering
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Fig. 10. Workstation View of Document Clustering

is shown in Figure 10. The workstation view shows the user
interface an end user would experience. The large area on the
right side shows that the elements analyzed have successfully
clustered, even though they are in different languages, using
the LMSA algorithm. For the performance comparison, Matlab
is compared against using Red Storm as the computational
engine. In Figure 9, the red portion of the bars labeled, ‘Load
U’, represents the time spent bringing data into the processing
engine. With Matlab, the computation is replaced by IO as
this computation scales. For the NSSI-based version using Red
Storm, the load times are minimal and the various computation
times reduce continuously as the number of processing cores
increases. This approach offers faster time to solution offering
the user a more flexible ‘what if’ opportunity than could be
performed before.

The integration of the HPC and visualization resources into
the end-user workstation workflow offers far greater computa-
tion capabilities than available on the workstation alone. The
interactivity limitations of HPC resources require some other
interface to the end user. This integration demonstrates the
potential of leveraging the computation capabilities of HPC
resources to feed interactive displays. Ultimately, this model
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may inform how exascale science workflows are performed.
For example, an interactive visualization is manipulated by a
scientist exploring a running simulation. At the appearance or
notice of a particular feature, the end-user can then inform
the HPC resources to adjust the computation, such as moving
backwards in time to just before the feature appears, and
then move the simulation forward. This integration of various
heterogeneous resources as demonstrated in this scenario will
be critical should this model become mainstream.

C. Streaming Analysis

Like the document clustering example in Section IV-B1,
the HPC resource can be leveraged for other non-scientific
simulation applications with the right infrastructure. In this
case, analysis of Ethernet frames to detect patterns of or
particular network traffic can leverage the parallel processing
capabilities of the HPC platform to accelerate analysis. For
this case, compressed collections of Ethernet frames are sent
into the HPC resource where it is distributed to the parallel
processing engines to perform the analysis. This is illustrated
in Figure 11.
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To test the performance of this architecture, an ingest
service reads from a file of 8543 compressed IP packets for
processing. These compressed packets are sent to RedStorm
for processing. Client processes request 100 frames at a time
for processing. Each client then decompresses, analyzes and
sends the results back to the server. The results are presented
in Figure 12. Through using this architecture, we are able
to achieve 900 Mbps of sustained analysis performance and
can scale this up adding additional processing simply based
on the available compute capacity. The mostly embarrassingly
parallel nature of the analysis makes this an ideal candidate
for parallel processing using resources such an Red Storm.
In this case, the long term bottleneck will be the bandwidth
between the HPC resource and the outside network where the
packets are sourced. Time for additional analysis of the packets
can be hidden through the parallel processing maintaining the
throughput of the system.

These sorts of streaming-style examples with potentially
embarrassingly parallel analysis do not really need the high
speed interconnect typical of an HPC platform, but the parallel
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computation capacity provides excellent scalability. As men-
tioned above, the ingress and egress bandwidth to the cluster
are really the scaling limiting factors.

V. CONCLUSIONS AND FUTURE WORK

These various experiments have demonstrated the potential
of using a few additional resources, such as is done with
traditional data staging, to enable different kinds of process-
ing using HPC resources. By exposing access to external
resources, affording rapid data insertion and extraction, or
integrating the HPC resource into an interactive workflow all
yield interesting potentials.

While these scenarios have demonstrated both the generality
and performance of this approach, more work still needs to be
done. First, programming models need to be developed that
simplify this sort of processing. The NSSI library has afforded
a relatively simple integration by offering indirection services
for nearly any API. While the Titan/ODBC service offers a
more general tool, this approach generally requires custom
development for each class of solution. Efforts must be made
to develop a general way to describe these sorts of services
that use a proxy element for connecting between disconnected
resources.

Along with the programming models, security must be
addressed. HPC resources have compute nodes isolated from
the outside network not just to avoid potential interference
and jitter introduced from external sources, but also to offer a
security envelope that offers some guarantees about who and
from where data can be accessed. In this case, a global security
envelope that extends beyond a single resource to protect data
must be developed. ORNL has developed a primitive version
of this for use with the Kepler workflow engine by using an
SSH proxy to tunnel into the HPC resource from outside [21].
This tunnel is then used to communicate between the compute
processes and the external workflow control system. This
system is not generic enough nor does it address this as a
general problem.

One challenge that these techniques currently experience
is the difficulty of scheduling service jobs along with the
compute processes. Current schedulers do not offer support for
scheduling the deployment of applications onto service nodes
as part of compute job. Instead, the service processes must be
deployed ahead of time and wait for the compute job to start.
Ideally, different classes of resources will be made available
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on HPC resources with joint or separate scheduling. This will
afford requesting 1 service node along with 100,000 compute
cores to enable these sorts of integrations of HPC resources
into external applications.

Ideally, the hardware for the service nodes should be able
to be custom or specialized pieces of hardware affording
tighter integration or better processing options than a standard
compute node may offer. For example, the Netezza appliance
has an interface hardware module that could be installed as
part of the HPC resource to afford direct NZLoad access from
the compute area. Alternatively, a service node with a large
amount memory compared to a compute node can be used to
perform visualization processing or other data intensive tasks
that are not as communication intensive. This specialized hard-
ware would complicate the HPC resources, but the advantages
make the costs worthwhile for many applications.

Lastly, as with any increase in resources for a compute job
on the HPC resource, resilience must be considered. Lack
of support for scheduling jobs on service nodes makes a
failure of those nodes fatal to the larger compute job. This
sort of fragility is not acceptable for long-term use of this
architecture. Instead, resilience support for integrating these
various components so that connections can be reformed after
failures must be developed.
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