Transactional Parallel Metadata Services for Integrated
Application Workflows

Jay Lofstead!, Jai Dayal®
'CSRI, Sandia National Laboratories
*CERCS, Georgia Institute of Technology

ABSTRACT

Scientific simulations have a different relationship with all
of the data generated than many data analysis systems that
support applications like the Large Hadron Collider and the
SLOAN Sky Survey. In many cases, simulations need to gen-
erate large number of intermediate data sets that ultimately
are thrown away once some analysis routines are applied to
the data. This generates some summarized, derived result
that inspires some scientific insight. Traditionally, these rou-
tines use the storage array to persist the intermediate results
between each step of the data analysis process. The volume
and frequency of this data can be overwhelming compared
with the available IO bandwidth on the machine. To han-
dle this volume and frequency, current research efforts are
determining how to move the storage of intermediate data
from the storage array into the memory of the compute area.
Then, the analysis routines are incorporated to create Inte-
grated Application Workflows (IAWSs). Data staging tech-
niques require some mechanism to replace the semantics of-
fered by the file system to control data movement and access.
As part of an HPC-focused transaction services project, a
first pass at a transactional metadata service for in compute
area data storage is being developed.

1. INTRODUCTION

Many applications have shifted their data management fo-
cus from an ACID compliant transactional technique to use
less strong semantics. For these applications, incomplete
and partially out of date results are good enough. For ex-
ample, queries against a dynamically growing data set need
not be 100% acurate nor complete to be useful. Instead,
response speed is a significant contributor to the perceived
quality of the tool. This is bolstered by an assumption that a
subsequent query will provide more up-to-date results. How-
ever, this sort of partial completeness model does not suit
all application domains.

HPC applications come in many flavors. A popular group
of HPC applications use some data source, typically a phys-
ical instrument of some sort, to collect a massive data set.
Once this data is collected a series of analysis routines are

Copyright 200X Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

performed on this static data set. In these cases, the data
set is fixed and permanently stored. The SLOAN sky sur-
vey is a classic example of this kind of application. Another
large category are scientific simulations that use models to
represent some phenomena in an effort to better understand
how something works or to learn how to introduce new effi-
ciencies.

In this second category, the simulation implements a series
of formulas that are applied across a simulation domain to
model some physical phenomena. Typically, these applica-
tions run cyclically slowly progressing the physical processes
being modeled in an effort to represent some real-world pro-
cess. At periodic increments, the dataset is dumped to give
a snapshot of the current state of the simulation offering an
opportunity to evaluate the current state of the simulation
and the progression of the model. The collection of these
snapshosts can be used with some analysis routines to make
new scientific discoveries. Unlike the previous category, this
intermediate data is generally discarded once the analysis is
complete. Rather than maintaining the data set for future
experiments, these intermediate data sets are simply the
necessary components of the discovery process. The actual
desired outcome is some new understanding that may in-
fluence some engineering application, mathematical model,
or some basic understanding of a physical process. Given
current technology, this intermediate data is stored in a cen-
tralized storage array in between each step of the subsequent
analysis routines. Given the faster growth of compute ca-
pacity than IO bandwidth, alternative approaches to enable
this workflow are being explored.

Integrated Application Workflows (IAWSs) offer the ability
to host data storage within the compute area for subsequent
data analysis routines. These efforts are commonly grouped
under the name of ‘data staging’ projects. Several current
efforts [1-3] are exploring how and where to host the analy-
sis functionality as the data moves from the computation to
storage. In all of these cases, the quality of semantics offered
by the storage system is lacking. For example, there is no
way to make the equivalent of a ‘write lock’ to prevent access
by other processes. There is also no way to block the visibil-
ity of a data set prior to it being validated as both complete
and correct. For IAWSs to achieve any large adoption rate,
these shortcomings must be addressed.

The doubly distributed transaction services [4] offer these
sorts of guarantees to the data movement operations for
these data staging systems, among other scenarios. This
prevents premature access to a data set prior to data being
complete and correct and keeps analysis routines from in-

correctly attempting to process a partial data set leading to
either a failure or incorrect result due to the missing data.
These transactional services are also being applied to system
reconfiguration operations to help manage the availability
of components by only allowing data flows to shift once the
new resources have been successfully deployed. While both
of these scenarios are useful by themselves, the additional
service required to make these services fully useful for an
TAW is a metadata service that is both transaction and par-
allel client aware. Traditional database engines are gener-
ally transaction aware, but work under the assumption that
the client is a single process working against a collection of
potentially distributed server resources. Even systems like
Zookeeper that implement the Paxos algorithm work well
for distributed clients, but not for parallel clients acting as
a single agent.

Parallel clients introduce a level of coordination such that
only when all clients have finished providing their input on
the operation can the total operation across the distributed
servers be completed. For transactions, this means that
there needs to be consensus among not just the servers, but
also the clients for a commit or a rollback is required. Ex-
isting metadata systems do not support this sort of func-
tionality. Parallel file systems typically work by having a
single process create a file and then all of the parallel clients
open the file. There are also assumptions of conflict avoid-
ance/prevention. While it is possible to use the create/open
approach to adapt a parallel file system metadata system,
the other semantics do not work well for this online use. Fur-
ther, the transaction support would have to be integrated
into the existing system. Given the extent of changes, cre-
ating a simplified, streamlined metadata service makes more
sense than trying to make extensive changes to existing sys-
tems.

More broadly, the transaction system is intended to work
across not just local compute resources, but also incorporate
potentially widely distributed components. This requires
a variety of simultaneous different networking technologies
all working in concert on a single transaction. This paper
explores the requirements and initial implementation efforts
to build such a metadata system to support TAWs and the
current implementation status of a prototype system.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a short overview of the related work. We in-
troduce the metadata requirements in Section 3. A working
example of how this system would be used in an HPC envi-
ronment is presented in Section 4. We next present our cur-
rent implementation status in Section 5. Section 6 presents
our conclusions.

2. RELATED WORK

Metadata systems are nothing new. In particular file sys-
tems have used a metadata system to track the contents of
the storage since early days. Transactions have been applied
to distributed file systems in the past [5,6]. However, these
distributed file systems are focused on the single client model
or are limited to just file system transactions. The system
we are building focuses specifically on distributed clients us-
ing an online storage area as part of a larger transaction.
The combination of multiple clients and broader operations
as part of the transactions makes this system quite different.

In recent years, metadata system research has shifted the
focus to making metadata scalable for parallel file systems.

In these cases, the number of files in a single directory, simul-
taneous file creations, and similar operations have been the
focus. Giga+ [7], Spyglass [8], the adaptive & scalable sys-
tem [9], Ceph [10], and Ursa Minor [11] are prime examples
of this sort of work. In contrast, this project is focused on
online use for intermediate, temporary data. We also have
a strong requirement for having controls over the visibility
and accessibility of the data from various local and remote
locations in an effort to fully support the needs of IAWs.

Recent efforts to popularize the Paxos [12] algorithm with
Zookeeper [13] have superficially addressed the needs of this
project. While it does offer distributed metadata manage-
ment, it is still single client focused.

The closest work is really as much motivation as it is re-
lated work. In this case, PreDatA [1] and Glean [3] are
examining how and were to place computation on the path
from the simulation to storage. While both of these efforts
are steps towards IAWs, both lack the semantics of trans-
actions to manage the data sets as they are being processed
and the metadata management for finding data that is in
some state and location along the path. DataSpaces [2] is
quite similar, but it has focused on offering a querying ca-
pability from the published data sets. It lacks the ability
to control visibility and enforcing atomic actions that would
make an TAW a reliable and predictable tool for scientists.

The biggest effort to address the needs to this system
is likely SciDB [14]. The major difference is in philoso-
phy based on the motivating applications. For SciDB, the
astronomy-related applications have large data sets that seem
to be independent pieces all stored together based on some
temporal or spatial relation. This eliminates the need to
control a collection of insertions from a set of clients as a
single, atomic action. Instead, the simulation driven ex-
ample has massive data sets generated on a periodic basis.
Each of these data sets is independent from each other, but
are distributed over a large number of clients requiring a
different interaction model for storing data. In this case,
the whole set from all clients should be treated as a single
entry with the transaction managing the insertion of the set
of pieces as an atomic action and controlling visibility until
the transaction has been committed.

Overall, there does not exist a current effort that deliv-
ers the kind of parallel client with support with additional
functionality, like transactions, metadata service. There are
many pieces that contribute ideas, such as the examples de-
scribed above, but the new effort will have to address this
different scenario in order to bolster the reliability of TAWs.

3. TRANSACTIONAL PARALLEL
METADATA REQUIREMENTS

IAWs have a relatively simple set of requirements that can
be summarized as

Making complete data available quickly to the
next stage of processing across the distributed
environment hosting different processing compo-
nents.

Implementing this in a parallel and distributed system is
unfortunately far more complex. There are several compli-
cations that must be addressed to enable these seemingly
simple requirement.

First, a data set must be complete. For a parallel and
potentially distributed system, complete requires that the

metadata system have either direct or indirect coordination
with all clients to agree that all data is ‘posted’ and available
somewhere. Scientific workflow systems using a centralized
disk storage system for intermediate data perennially wres-
tle with how to determine if a dataset is complete and ready
for processing. Tricks like creating a dummy ‘finished’ file
or waiting for the file size to stabilize for a period of time are
commonly used to try to prevent premature data set process-
ing. If the metadata service provides a way to prevent dis-
covery of an ‘in process’ data set until it is complete, TAWs
become simpler than their offline counterparts. Through the
use of a transactional mechanism supporting ACID seman-
tics, a data set is only made visible in the metadata system
once the transaction that creates the data set is committed.

Second, making data visible quickly is a two-part prob-
lem. First, there must be a viable way to determine when
the data set is ready for consumption. This has been ad-
dressed above. The second part of the problem is doing
this with minimal delay. With transactions preventing the
appearance of a dataset in the metadata service until it has
been successfully completed, a client can rely on the data set
being available as soon as it appears in the catalog. Limited
compute area storage demands that the temporary interme-
diate data be processed and discarded as quickly as possible
to prevent delays in the simulation. Additional functional-
ity such as triggers, callbacks, and explicit notification mes-
saging will minimize the discovery delay and likely to be
incorporated in some form as the service evolves.

The third requirement addresses the distributed nature of
data processing for scientific workflows. Data must be ac-
cessible across not just the single HPC resource, but also
across a WAN environment for cases where additional com-
pute platforms are used to distribute the compute load to
potentially more appropriate resources as described below.
While this attribute is not required for a proof-of-concept
implementation, it is key for any production scale deploy-
ment. For scenarios where one HPC compute resource is
architected for simulation tasks by making a certain ratio
of compute cores to memory, visualization resources tend to
have a much larger amount of memory per core to afford
more efficient rendering. These differing hardware profiles
are nearly universally deployed as separate resources. In
many cases, these are deployed in the same data center. In
others, they are hosted at another location somewhere across
the Internet. For these latter cases, with sufficient gateways
and bandwidth, the TAWs should be able to find and request
data from locations across the WAN to continue processing
using the most appropriate hardware.

A final, implied requirement is that if there are multi-
ple metadata service instances responsible for portions of
the overall workflow, there must be some way to directly
or indirectly query other sources to find the requested data.
This feature is advanced and not likely to be in the initial
implementation. Instead, the clients will have to have direct
knowledge of where other metadata services are and how to
contact them manually.

Overall, the parallel and distributed nature of data cre-
ators and consumers requires a metadata service that can
control visibility of data sets, be integrated with the con-
sensus of creators before revealing a data set, and available
across the WAN no matter where the data is stored.

Ancillary to these requirements is the ability to rethink the
interaction mode. The file system interface, while comfort-

able, is not necessarily the best option. Instead, an object
based structure organized by run, variable, and iteration is
much more natural for the processing. This structure hides
any details of how and where the data is stored simplifying
discovery and access. Without an underlying file system, in-
troducing this sort of interface is as easy as any other. It also
makes it more natural to introduce a query-style interface for
retrieving the data. The whole file metaphor disappears in
favor of thinking about the data directly. The eSiMon [15]
system from ORNL offers a view of how this might work
from a user’s perspective.

4. APPLYING TO AN HPC WORKFLOW

At a detailed level, the IAWSs targeted by this work contain
a core simulation that generates the raw data that is then
analyzed by various routines before generating some output

that is written to storage.

CTH Application
@ 4 4 4

APl |’
RN !:’l,: Fragment
AR Detection
(f(C L
(£ 0 (L5
(rrris
Fragment
Tracking

1

Visualization
Figure 1: CTH Workflow

At a concrete level, the CTH high energy physics simula-
tion in use at Sandia models explosions of various sorts. The
simulation itself generates raw data representing the state of
the materials and various attributes, such as the tempera-
ture and velocity, as the simulation progresses. This raw
data is traditionally written to a centralized disk storage
system for later processing. The next step of the processing
transforms this raw data into a list of fragments useful both
for tracking and rendering using a visualization system like
ParaView. This processed data is sometimes written back
to disk prior to the next phase that generates a visualization
of the current data set.

Key to understand with this system is that the data moved
in the example is not stored in the metadata system. In-
stead, it is stored using an object store on some location
with the metadata about each object that comprise the en-
tire variable stored in the metadata service described in this
paper.

By moving the various analysis and visualization com-
ponents online, the rate of data output can be increased
exceeding the IO bandwidth of the storage system. This en-
ables more detailed visualization movies and affords track-
ing fragments automatically for more detailed knowledge of
how the material is performing in the simulation. In or-
der for these steps to take place, each output action must
be complete before the next one can begin. Using a data
staging technique to store the data in the compute area re-

Storage

quires a mechanism like the doubly distributed transactions
to control the visibility of the data as it moves through the
workflow. The metadata service is critical for tracking the
data as it is generated so that each additional component
along the AW path can discover what data is available for
processing and when. The actual raw data is not generally
useful once these derived elements are generated allowing it
to be safely discarded. These derived elements are consid-
erably smaller in total than the raw data required to create
them saving time spent writing to the storage array resulting
in more detailed science output from simulation runs.

S. CURRENT IMPLEMENTATION STATUS

The current system is well underway. The transaction
protocol is in its second iteration with a model that is ex-
pected to scale easily towards exascale. It is in use for both
system reconfiguration as well as data movement tasks. The
metadata service has been designed taking into account the
lessons from the development of the transaction protocol
itself as well as data staging efforts. The implementation
of the metadata system itself has expected completion of a
rudimentary system meeting the general requirements de-
scribed above is scheduled to be complete in the next 3
months based on other project milestones.

6. CONCLUSIONS AND FUTURE WORK

IAWs are a likely requirement for scientific simulations in
the move towards exascale. The differing requirements of
parallel clients and handling groups of operations across ap-
plications similar to how traditional database transactions
operate makes existing metadata services inadequate to sup-
port data discovery and tracking operations.

The current implementation effort is focused on develop-
ing for a single HPC platform. Once this scenario is fully
tested, the next step will expand the system to work across
a wide area network so that a scientific workflow can be dis-
tributed across not just multiple platforms within a single
data center, but across the Internet. With this iteration, the
platform will offer a foundation for a potential exascale file
systems. With the requirements outlined in this paper, the
additional work is well understood.

7. ACKNOWLEDGEMENTS

TV A o)
Laboratories ///’ vN,A 'ﬂ

Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

8. REFERENCES

[1] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, and
M. Wolf, “PreDatA - preparatory data analytics on
Peta-Scale machines,” in In Proceedings of 24th IEEE
International Parallel and Distributed Processing
Symposium, April, Atlanta, Georgia, 2010.

[2] C. Docan, M. Parashar, and S. Klasky, “DataSpaces:
An interaction and coordination framework for

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

coupled simulation workflows,” HPDC' ’10:
Proceedings of the 18th international symposium on
High performance distributed computing, 2010.

V. Vishwanath, M. Hereld, and M. Papka, “Toward
simulation-time data analysis and i/o acceleration on
leadership-class systems,” in Large Data Analysis and
Visualization (LDAV), 2011 IEEE Symposium on, oct.
2011, pp. 9 —14.

J. Lofstead, J. Dayal, K. Schwan, and R. Oldfield,
“D2t: Doubly distributed transactions for high
performance and distributed computing,” in IEEFE
Cluster Conference, Beijing, China, September 2012.
B. Braban and P. Schlenk, “A well structured parallel
file system for PM,” ACM Operating Systems Review,
vol. 23, no. 2, pp. 25-38, Apr. 1989.

M. R. Brown, K. N. Kolling, and E. A. Taft, “The
alpine file system,” ACM Trans. Comput. Syst., vol. 3,
no. 4, pp. 261-293, Nov. 1985.

S. Patil, G. A. Gibson, S. Lang, and M. Polte, “Giga+:
scalable directories for shared file systems,” in PDSW,
G. A. Gibson, Ed. ACM Press, 2007, pp. 26-29.

A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and
E. L. Miller, “Spyglass: Fast, scalable metadata search
for large-scale storage systems,” in FAST, M. 1. Seltzer
and R. Wheeler, Eds. USENIX, 2009, pp. 153-166.
J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and
scalable metadata management to support a trillion
files,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, ser. SC '09. New York, NY, USA: ACM,
2009, pp. 26:1-26:11.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn, “Ceph: A scalable,
high-performance distributed file system,” in
Proceedings of the 2006Symposium on Operating
Systems Design and Implementation. University of
California, Santa Cruz, 2006, pp. 307-320.

M. Abd-El-Malek, W. V. C. II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. P.
Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan,
S. Sinnamohideen, J. D. Strunk, E. Thereska,

M. Wachs, and J. J. Wylie, “Ursa minor: Versatile
cluster-based storage,” in FAST. USENIX, 2005.

L. Lamport and K. Marzullo, “The part-time
parliament,” ACM Transactions on Computer
Systems, vol. 16, pp. 133—-169, 1998.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“Zookeeper: Wait-free coordination for internet-scale
systems,” in In USENIX Annual Technical
Conference, 2010.

P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,
R. Simakov, E. Soroush, P. Velikhov, D. L. Wang,

M. Balazinska, J. Becla, D. DeWitt, B. Heath,

D. Maier, S. Madden, J. Patel, M. Stonebraker, and
S. Zdonik, “A demonstration of scidb: a
science-oriented dbms,” Proc. VLDB Endow., vol. 2,
no. 2, pp. 1534-1537, Aug. 2009.

R. Barreto, S. Klasky, N. Podhorszki, P. Mouallem,
and M. A. Vouk, “Collaboration portal for petascale
simulations,” in CTS, W. K. McQuay and W. W.
Smari, Eds. IEEE, 2009, pp. 384-393.

	Introduction
	Related Work
	Transactional ParallelMetadata Requirements
	Applying to an HPC Workflow
	Current Implementation Status
	Conclusions and Future Work
	Acknowledgements
	References

