
Developing Integrated Data Services for Cray Systems with a
Gemini Interconnect

Ron A. Oldfield Todd Kordenbrock Jay Lofstead

July 31, 2012

Abstract

Over the past several years, there has been increasing interest in injecting a layer of compute resources
between a high-performance computing application and the end storage devices. For some projects, the
objective is to present the parallel file system with a reduced set of clients, making it easier for file-system
vendors to support extreme-scale systems. In other cases, the objective is to use these resources as “staging
areas” to aggregate data or cache bursts of I/O operations. Still others use these staging areas for “in-situ”
analysis on data in-transit between the application and the storage system. To simplify our discussion,
we adopt the general term “Integrated Data Services” to represent these use-cases. This paper describes
how we provide user-level, integrated data services for Cray systems that use the Gemini Interconnect. In
particular, we describe our implementation and performance results on the Cray XE6, Cielo, at Los Alamos
National Laboratory.

1 Introduction

In our quest toward exascale systems and applica-
tions, one topic that is frequently discussed is the
need for more flexible execution models. Current
models for capability class high-performance comput-
ing (HPC) systems are essentially static, requiring
applications and analysis to execute independently
storing intermediate results on a persistent, globally
accessible parallel file system. For example, in fu-
sion science, simulation of the edge of the plasma [17]
and the interior of the plasma [39] are currently sepa-
rate simulations. To have a more complete, accurate
model for a fusion reactor, these components need to
be tightly coupled to share the effects between the
two models. The CESM climate model [24] is sim-
ilar in that it incorporates atmosphere, ocean, land
surface, sea ice, and land ice through a coupling en-
gine to manage the interactions between each of these
different systems yielding a more accurate model of
global climate. In most cases, these and other scien-
tific applications are part of larger offline workflows
that process the output written to storage in phases
that ultimately yield insights into the phenomena be-
ing studied.

For exascale systems, there is a general belief that
systems will need more flexible execution models
that allow the coupling of simulations and/or anal-
ysis. This coupling promises to reduce the I/O bur-

den on the file system and potentially improve over-
all efficency of the application workflow. Current
work to enable these coupling and workflow scenar-
ios are focused on the data issues to resolve resolu-
tion and mesh mismatches, time scale mismatches,
and make data available through data staging tech-
niques [20, 34, 21, 11, 2, 40, 10].

In this paper, we describe R&D efforts and chal-
lenges of coupling simulation codes and analysis on
Cray systems with Gemini Networks. In particular,
we describe how to create and use Integrated Data
Services on the Cray XE6 platform using Sandia’s
Network Scalable Service Interface (Nessie) [20]. An
integrated data service, illustrated in Figure 1, is a
separate (possibly parallel) application that performs
operations on behalf of an actively running scientific
application. Nessie is a framework for developing
data services on HPC platforms. It provides portable
interfaces for inter-application communication across
RDMA-based networks, an RPC-like abstraction for
rapidly developing client and server stubs, and a
portable model for defining serializable data struc-
tures for data transfer.

1

Client Application!
(compute nodes)! Data Service!

(compute/service nodes)!

Raw
Data!

Processed	
Data	

File System!

Cache/
aggregate/

process!

Visualization!

Database!

Figure 1: Data services uses additional compute re-
sources to perform operations on behalf of an HPC
application.

2 Background and Related
Work

There are a number of ongoing efforts to integrate or
couple simulation, analysis, and visualization. The
approaches are generally categorized into two areas:
in-situ and in-transit [23]. The term in-situ ap-
plies to codes that perform the analysis or visualiza-
tion of data with the simulation that generates the
data. In-situ libraries link to the main code and ex-
ecute through library calls. This concept was first
mentioned in the 1987 National Science Foundation
Visualization in Scientific Computing workshop re-
port [22]; however, interest in in-situ has grown sig-
nificantly in recent years and is rapidly becoming one
of the most important topics in large-scale visualiza-
tion [15, 3].

One reason in-situ analysis is attractive for petas-
cale systems is that the cost of dedicated interactive
visualization computers for petascale computing is
prohibitive [9]. Developing algorithms and techniqes
that work directly with the simulation code reduces,
but does not eliminate, the need for specialized visu-
alization hardware. Other studies show that the I/O
cost of writing and reading data from parallel file sys-
tems is beginning to dominate the time spent in both
the simulation and visualization [36, 33]. In-situ visu-
alization eliminates this I/O cost by performing the
visualization in the memory of the scientific code.

One downside of in-situ analysis is that the algo-
rithms to perform analysis may not scale as well as
the scientific code, creating a significant bottleneck
for the overall runtime. This is partly because the
algorithms and codes for visualization were not de-
signed for large-scale HPC systems– we expect some

of these issues to be resolved as visualization experts
become more accustomed to large-scale parallel pro-
gramming. In some cases, however, the communica-
tion requirements of an analysis algorithm are not
appropriate for extreme-scale, and thus in-situ for
capability-class applications.
In transit analysis (also known as staged analysis)

is similar to in-situ analysis in that the analysis code
runs concurrently with the simulation code. The dif-
ference is that the analysis takes place on different
compute resources than the simulation. Figure 2 il-
lustrates this by looking at in-situ and in-transit anal-
ysis for Sandia’s CTH shock physics code. A physi-
cal partitioning of the simulation and analysis codes
allows the analysis to execute in a pipeline-parallel
fashion with minimal interference on the parallel sim-
ulation. In some cases, the staging nodes simply pro-
vide data caching in the network to provide a buffer
for bursty I/O operations [29, 34, 2, 25]. In this case,
the staaging area captures data from the application,
then writes it to storage while the application contin-
ues to compute, effectively trading the cost of writing
to a storage system with the cost of writing memory-
to-memory through the high-speed interconnect [29].
There are also a number of examples of using staging
areas for statistical analysis, indexing, feature extrac-
tion [23], FFTs [32], and data permutations [26].

Some operations can be performed either in-situ
or in-transit based on both the resource availability
(memory and computation) and communication re-
quirements. ADIOS [19] introduced the idea of Data
Characteristics [21] as a way to represent a local por-
tion of statistics intended to either be used to gain
knowledge about that portion of the data or to used
in aggregate to learn about the data set as a whole.
The placement of these operators was examined in
PreDatA [40]. Other efforts to accelerate the use of
data include FastBit [14] to generate a bitmap-based
index for data values. This approach yielded a rel-
atively compact index with fast access to elements.
The ADIOS data characteristics have also been ex-
tended from just the minimum and maximum value
to include count, sum, sum of squares, histogram, and
is it an infinity or not [12]. Another use of in-transit
processing is for data compression, such as is done in
ISABELA [18].

Another primary difference between in-situ and in-
transit analysis is that in-transit analysis requires the
ability to transfer data from the scientific code to the
“staging” area for analysis. In techniques such as I/O
Delegation[25] the applications uses MPI to commu-
nicate this data. For I/O Delegation, the user al-
locates an additional set of staging processors when
it launches the application. A separate MPI com-

2

...

Client Application

CTH analysis
code

Fragment
Data

(a) In-situ analysis

...

...

Client Application

CTH PVSPY
Client

Fragment-Detection Service

PVSPY
Server

Raw
Data Fragment

Data

analysis
code

(b) In-transit analysis

Figure 2: Comparison of in-situ (a) and in-transit (b) fragment detection for the CTH shock physics code.

municator allows the staging processors to perform
analysis without interfering with the primary applica-
tion. This approach was first demonstrated for high-
performance computing in a seismic imaging applica-
tion called Salvo[32]. In Salvo, the user allocated an
“I/O Partition” for staging outgoing data and also
performing proprocessing (i.e., FFTs) on incoming
data. I/O delegation is perhaps the most portable
approach for in transit computation, but it requires
a tight coupling of analysis with application and it
is difficult to share the service with multiple applica-
tions.

A second approach for in transit analysis is to cre-
ate the staging area as a separate application that
communicates with the client application This ap-
proach is extremely flexible because it allows for the
potential “chaining” of application services, coupling
of applications, and application sharing. This is the
approach we take with Nessie. One problem with this
approach is that it requires the transport mechanism
to use the low-level network transport of the host ma-
chine for performance and efficiency. For example, on
Cray XT systems, the transport uses Portals; on Cray
XE systems, the transport uses uGNI; on IBM Blue-
Gene systems, the transport uses the Deep Comput-
ing Message Facility (DCMF), and on generic HPC
clusters, the transport uses InfiniBand. As we discuss
in Section 4.1, Nessie provides a portable abstraction
layer that supports all these low-level transports.

Another challenge for in-transit approaches is man-
aging allocation and placement of services with re-
spect to the application. On InfiniBand systems,
such as Sandia’s RedSky cluster, the user-developed
launch script (i.e., batch script) must be explicit
about placement to avoid sharing nodes with the
application, thus losing the ability to manage large
buffers for staging. In addition, placement matters,
as shown by an earlier study of data staging for
checkpoints [28]. As we discuss in Section 4.2, inter-
application communication is also restricted by the
security model on some systems, such as the Cray

XE6.

Data services, as defined in this paper, are a general
form of in-transit computing. They leverage addi-
tional resources for analysis, management, and stag-
ing of data. For example, the Nessie service devel-
oped for the Lightweight file system (LWFS) provided
authentication, authorization, and storage [30]. The
Dataspaces work is also more than just “in-transit”
analysis [10]. They leverage memory in unused com-
pute nodes to manage a distributed shared cache for
coupled applications.

The two projects most similar to Nessie are
DataStager [2] and GLEAN [38]. All provide a
mechanism for data transport and serialization, and
all have been demonstrated to enable data staging
and analysis capabilities. Nessie, however, is the
only one with support for all the major HPC plat-
forms. GLEAN is exclusively used on BG/P sys-
tems, and DataStager has ports for SeaStar (Por-
tals3) and InfiniBand, but they are planning to use
Nessie’s RDMA abstraction library NNTI (see Sec-
tion 4.1) for access to Gemini networks.

Finally, there are some interesting approaches that
are effectively a hybrid of in-situ, in-transit. These
projects use logic and system characterizations to de-
cide where data-analysis code should execute. Some
early work, for example, represented data-flow com-
putations for computational grid applications as a
series-parallel graph that could be optimized in two
phases: the first to increase parallelism, the second to
decide placement based on data flow and locality [27].
More recent work is using a combination of schedul-
ing, dynamic code generation, and fast serialization
technology to deploy “just in time” analysis capabil-
ities that execute in-situ or in-transit, depending on
a number of different parameters [1]

3

3 Nessie

The NEtwork Scalable Service Interface, or Nessie,
is a framework for developing parallel client-server
data services for large-scale HPC systems [20, 31].
Nessie was originally developed out of necessity for
the Lightweight File Systems (LWFS) project [30], a
joint effort between researchers at Sandia National
Laboratories and the University of New Mexico. The
LWFS project followed the basic philosophy of “sim-
plicity enables scalability”, the foundation of ear-
lier work on lightweight operating system kernels at
Sandia [35]. The LWFS approach was to provide
a core set of fundamental capabilities for security,
data movement, and storage and afford extensibility
through the development of additional services. For
example, systems that require data consistency and
persistence might create services for transactional se-
mantics and naming to satisfy these requirements.
The Nessie framework was designed to be the vehicle
to enable the rapid development of such services.

Because Nessie was originally designed for I/O sys-
tems, it includes a number of features that address
scalability, efficient data movement, and support for
heterogeneous architectures. Features of particular
note include

1. asynchronous methods for most of the interface
to prevent client blocking while the service pro-
cesses a request;

2. a server-directed approach to efficiently man-
age network bandwidth between the client and
servers;

3. separate channels for control and data traffic;
and

4. XDR encoding for the control messages (i.e., re-
quests and results) to support heterogeneous sys-
tems of compute and service nodes.

A Nessie service consists of one or more processes
that execute as a serial or parallel job on the compute
nodes or service nodes of an HPC system. We have
demonstrated Nessie services on the Cray XT3 at
Sandia National Laboratories (SNL), the Cray XT4/5
systems at Oak Ridge National Laboratory, and a
large InfiniBand cluster at SNL. The Nessie RPC
layer has direct support of Cray’s SeaStar intercon-
nect [6], through the Portals API [7]; Cray’s Gemini
interconnect [4]; and InfiniBand [5].

The Nessie API follows a remote procedure call
(RPC) model, where the client (i.e., the scientific ap-
plication) tells the server(s) to execute a function on

request

A

B

C

D

data

result
buffer

request
queue

data
buffers

result

storage

Client Server

A

B

(1) write()

(2) get_data()

(3) send_result()

client-initiated
server-initiated

Legend

Figure 3: Conceptual network protocol for a Nessie
storage server executing a write request. The initial
request tells the server the operation and the loca-
tion of the client buffers. The server fetches the data
through RDMA get commands until it has satisfied
the request. After completing the data transfers, the
server sends a small “result” object back to the client
indicating success or failure.

its behalf. Nessie relies on client and server stub func-
tions to encode/decode (i.e., marshal) procedure call
parameters to/from a machine-independent format.
This approach is portable because it allows access to
services on heterogeneous systems, but it is not effi-
cient for I/O requests that contain raw buffers that do
not need encoding. It also employs a ‘push’ model for
data transport that puts tremendous stress on servers
when the requests are large and unexpected, as is the
case for most I/O requests.

To address the issue of efficient transport for bulk
data, Nessie provides separate communication chan-
nels for control and data messages. In this model,
a “control” message, also known as a request, is typ-
ically small. It identifies the operation to perform,
where to get arguments, the structure of the argu-
ments, and perhaps the data itself (if the data is
small enough to fit in the fixed-sized request). In
contrast, a data message is typically large and con-
sists of “raw” bytes that, in most cases, do not need to
be encoded/decoded by the server. For example, Fig-
ure 3 shows the transport protocol for an I/O server
executing a write request.

The Nessie client uses the RPC-like interface to
push control messages to the servers, but the Nessie

4

server uses a different, one-sided API to push or pull
data to/from the client. This protocol allows inter-
actions with heterogeneous servers and benefits from
allowing the server to control the transport of bulk
data [16, 37]. The server can thus manage large vol-
umes of requests with minimal resource requirements.
Furthermore, since servers are expected to be a crit-
ical bottleneck in the system, a server directed ap-
proach affords the server optimizing request process-
ing for efficient use of underlying network and storage
devices – for example, re-ordering requests to a stor-
age device [16].

While it is not strictly necessary on systems that
have homogenous clients and servers, we use XDR en-
coding to provide portable serialization of arguments
for the “control” messages and arguments. This was
a design decision made early in the project that allow
the client to send arbitrary C-like data structures to
the server with minimal development effort. At the
time, we were implementing file services for a sys-
tem where the service nodes were a different archi-
tecture (and had different endienness) than the com-
pute nodes. In this case, byte-swaps were necessary
for the control structures. Since rpcgen, the function
that generates the serialization code is pervasive in
Unix environments and has been in use for more than
a decade, it was the logical choice for argument mar-
shaling. In addition, as will be shown in the Section 6,
the overhead of XDR is minimal for implementations
that make extensive use of the data channel for bulk
data.

4 Cray XE6 Implementation
The Nessie implementation uses remote direct mem-
ory access (RDMA) to transport data for all opera-
tions. To portably support the RDMA methods used
by Nessie, the implementation is built on an abstract
RDMA network interface called the Nessie Network
Transport Interface (NNTI). Each supported network
transport has a custom implementation of NNTI.
We currently have implementations for the Seastar
(based on Portals3), InfiniBand, and Gemini inter-
connects. This section details the implementation of
NNTI for the Gemini interconnect.

4.1 Gemini implementation of NNTI
The NNTI interface has four primary roles: initialize
the interface, connect to a remote node, register/un-
register memory, and transport data. The functions
that support these roles and the details of their im-
plementation of the Gemini interconnect are shown
below.

4.1.1 Initialize the interface

Every low-level interconnect has an interface for ini-
tializing and cleaning up the library that provides
access to the transport methods. The NNTI_init and
NNTI_fini functions provide wrappers for these func-
tions.

NNTI_result_t NNTI_init (
const NNTI_transport_id_t trans_id ,
const char *my_url ,
NNTI_transport_t *trans_hdl);

NNTI_result_t NNTI_get_url (
const NNTI_transport_t *trans_hdl ,
char *url ,
const uint64_t maxlen);

NNTI_result_t NNTI_fini (
const NNTI_transport_t *trans_hdl);

On Gemini systems, the NNTI_init function must
perform four steps to intialize.

First, NNTI_init must collect the parameters neces-
sary to the initialize uGNI. The ALPS job launch sys-
tem assigns Gemini network and security parameters
during launch. The ALPS low-level interface client
library (libalpslli.a) provides a simple request/reply
API to retrieve these Gemini parameters. The pa-
rameters include the network device ID, the local
NIC address, the application’s cookie and protection
tag (pTag). In addition to the application’s cookie
and pTag, each process requires a unique instance
ID to identify itself within a communication domain.
NNTI_init creates the instance ID using the NIC ad-
dress from GNI_CdmGetNicAddress and the core assigned
by the scheduler.

The second step is to create a communication do-
main (GNI_CdmCreate) and attach it to the network de-
vice (GNI_CdmAttach).

The third step is to create a connection listener
thread. NNTI uses TCP to bootstrap communica-
tions over the Gemini interconnect. Each NNTI pro-
cess creates a socket that is monitored for connection
requests by a background thread.

The fourth step is to create a peer identifier that
uniquely identifies this process to all other uGNI pro-
cesses.

NNTI_get_url is a convenience function that returns
the string representation of a peer. The string is a
URL of the form gni://hostname:port/?ptag=<ALPSptag>&
cookie=<ALPScookie>. An NNTI process that wishes to
be contacted by other NNTI processes should publish
the URL in a globally accessible location (a file in a
global filesystem, namespace service, etc).

On Gemini systems, the NNTI_fini function releases

5

resources that are allocated during GNI_init. All open
connections are closed, the listener thread is termi-
nated and the communication domain is destroyed
(GNI_CdmDestroy).

4.1.2 Connect to a remote node

Each transport has methods used to verify that we
can transfer data to/from a remote node. Some, like
Portals3 [7], do not require persistent connections,
but instead “ping” the remote node to make sure it
can responde to PUT and GET requests. The NNTI
wrappers for these functions are the NNTI_connect and
NNTI_disconnect functions.

NNTI_result_t NNTI_connect (
const NNTI_transport_t *trans_hdl ,
const char *url ,
const int timeout ,
NNTI_peer_t *peer_hdl);

NNTI_result_t NNTI_disconnect (
const NNTI_transport_t *trans_hdl ,
NNTI_peer_t *peer_hdl);

The NNTI_connect function bootstraps communica-
tion between two NNTI processes. The URL is parsed
to determine the peer’s location on the network, a
TCP connection is established and the processes ex-
change TCP and ALPS parameters. Both processes
inspect the ALPS parameters to ensure that they
have the same cookie and protection tag (pTag). If
the cookie and pTag do not match, the processes will
be in different communication domains and uGNI will
not allow them to communicate. Next the server
sends it’s request queue parameters to the client and
the client responds with flow control parameters. Fi-
nally, both sides close the TCP connection and tran-
sition the NNTI connection to the ready state.

The NNTI_disconnect function releases all resources
allocated while establishing the connection. After
disconnecting, this process will be unable to commu-
nicate with the peer.

4.1.3 Register memory

In general, RDMA transports require that mem-
ory be registered before it can be operated on di-
rectly by the NIC. When memory is registered, the
pages are pinned in RAM so that they do not
get swapped out. Registration also gives the pro-
cess the opportunity to place restrictions on the
types of operations allowed. The NNTI wrappers
for these functions are the NNTI_register_memory and
NNTI_unregister_memory functions.

NNTI_result_t NNTI_register_memory (
const NNTI_transport_t *trans_hdl ,
char *buffer ,
const uint64_t element_size ,
const uint64_t num_elements ,
const NNTI_buf_ops_t ops ,
const NNTI_peer_t *peer ,
NNTI_buffer_t *reg_buf);

NNTI_result_t NNTI_unregister_memory (
NNTI_buffer_t *reg_buf);

The NNTI_register_memory function goes be-
yond simple registration with GNI_MemRegister.
NNTI_register_memory uses the ops parameter to deter-
mine the buffer’s purpose and builds an NNTI_buffer_t
around the memory region. Each registered buffer
has an associated work request queue that keeps
an ordered list of work requests. Given the asyn-
chronous nature of Nessie and the adaptive routing
feature of Gemini, work requests may not comlpete
in the order they were issued.

NNTI_register_memory separates memory regions into
3 categories - initiators, targets and receive queues.

Initiator buffers are local to the initiator of the
RDMA operation. Initiator buffers are NNTI_SEND_SRC,
NNTI_PUT_SRC and NNTI_GET_DST. When the operation is
initiated, a work request will be pushed on to the
work request queue.

Target buffers are local to the target of the
RDMA operation. Target buffers are NNTI_RECV_DST,
NNTI_PUT_DST and NNTI_GET_SRC. At the time of regis-
tration, a work request is pushed on to the work re-
quest queue in anticipation of a future operation by
an initiator.

A receive queue (NNTI_RECV_QUEUE) is a specialization
of a target buffer. The memory region is divided into
elements of equal size. Each send to the queue causes
the offset to be automatically incremented by the ele-
ment size. The offset wraps around to zero when the
last element is written. At the time of registration, a
work request is added to the work request queue for
each element of the queue.

The NNTI_unregister_memory function cancels any
outstanding work requests and deregisters the mem-
ory region (GNI_MemDeregister).

4.1.4 Transport data

All RDMA transports support one-sided PUT/GET oper-
ations and some mechanism for checking for comple-
tion of an operation. The NNTI API supports these
operations with the NNTI_put, NNTI_get and NNTI_wait
functions.

NNTI_result_t NNTI_send (

6

const NNTI_peer_t *peer_hdl ,
const NNTI_buffer_t *msg_hdl ,
const NNTI_buffer_t *dest_hdl);

NNTI_result_t NNTI_put (
const NNTI_buffer_t *src_buffer_hdl ,
const uint64_t src_offset ,
const uint64_t src_length ,
const NNTI_buffer_t *dest_buffer_hdl ,
const uint64_t dest_offset);

NNTI_result_t NNTI_get (
const NNTI_buffer_t *src_buffer_hdl ,
const uint64_t src_offset ,
const uint64_t src_length ,
const NNTI_buffer_t *dest_buffer_hdl ,
const uint64_t dest_offset);

NNTI_result_t NNTI_wait (
const NNTI_buffer_t *reg_buf ,
const NNTI_buf_ops_t remote_op ,
const int timeout ,
NNTI_status_t *status);

The NNTI_send function transfers the entire msg_hdl
buffer to dest_hdl. It is assumed that dest_hdl is at
least as large as msg_hdl. If dest_hdl is not specified,
the data is sent to the peer’s receive queue. NNTI_send
is different from NNTI_put, because NNTI_send always
generates events on both the initator buffer and the
target buffer. NNTI_send is intended for small buffers,
so the FMA Put mechanism is used for all NNTI_send
operations.

The NNTI_put and NNTI_get functions operate in es-
sentially the same way with the only difference being
the direction of the transfer. Each function trans-
fers some portion of the src_buffer_hdl buffer into the
dest_buffer_hdl buffer. NNTI_put transfers data from a
local source into a remote destination. NNTI_get trans-
fers data from a remote source into a local destina-
tion. The size of the transfer as well as the source
and destination offsets are specified by the caller.
The Gemini transport uses the Fast Memory Access
(FMA) mechanism for small transfers and switches to
Block Transfer Engine (BTE) mechanism for trans-
fers larger than 4096 bytes. NNTI_put and NNTI_get
always generate events on the initiator buffer. In
NNTI’s default configuration, events are also gener-
ated on the target buffer. For truely one-sided oper-
ation, NNTI can be configured to suppress events on
the target buffer.

The completion queue events that uGNI generates
for memory handles do not include sufficient infor-
mation for target processes to determine the exact
operation that occured or the parameters of that op-
eration. In those cases where the target needs this ad-
ditional information, NNTI sends a work completion
message that specifies the instance ID of the initiator,

the NNTI operation, the number of bytes transfered,
the source offset and the destination offset.

The NNTI_wait function waits for the completion of
the oldest operation on reg_buf and returns the status
of the operation. NNTI maintains a queue of work
requests for each NNTI_buffer_t. NNTI_wait processes
uGNI completion events as they occur regardless of
the associated buffer. NNTI_wait only returns when the
oldest reg_buf work request completes or the time-
out expires. The status includes the result code, the
starting address of the memory region, the offset at
which the operation occurred and the number of bytes
affected by the operation.

There are also functions to wait for events on “any”
(NNTI_waitany) and “all” (NNTI_waitall) buffers. Details
of these functions are not necessary for this paper.

4.2 Enabling Inter-Application Com-
munication on Gemini Networks

Cray uses a Communication Domain (CDM) con-
struct to prevent arbitrary RDMA access from other
applications [13]. Each process in a job shares an
agreed upon protection tag (ptag) that is assigned by
the ALPS job launch system, and peers with different
ptags are not allowed to communicate. On produc-
tion systems, the ptag assigned to each job is unique,
preventing user-space applications from communicat-
ing with each other, even when the applications are
owned by the same user. This is a big problem for
deploying data services and coupling codes that are
instantiated as independent jobs. We overcame that
limitation by launching our jobs in Multiple Program,
Multiple Data (MPMD) mode. MPMD mode en-
ables a set of applications to execute concurrently,
sharing a single MPI Communicator. The problem
with this approach is that legacy applications were
not designed to share a communicator with other ap-
plications. In fact, most HPC codes assume they
have exclusive use of the MPI_COMM_WORLD communica-
tor. When this is not the case, a global barrier, such
as an MPI_Barrier function will hang because the other
applications did not call the MPI_Barrier function.

The CommSplitter library was designed to allow
applications to run in MPMD mode while still main-
taining exclusive access to a virtual MPI_COMM_WORLD
global communicator. The CommSplitter library
identifies the processes that belong to each applica-
tion, then “splits” the real MPI_COMM_WORLD into separate
communicators. The library then uses the MPI profil-
ing interface to intercept MPI operations, enforcing
the appropriate use of communicators for collective
operations.

No changes are required to the application source

7

code to enable this functionality. The user simply
links the CommSplitter library to the executable be-
fore launching the job. The library has no effect on
applications that are not run in MPMD mode.

5 A Simple Data-Transfer Ser-
vice

This section demonstrates how to construct a simple
client and server that transfer an array of 16-byte
data structures from a parallel application to a set
of servers. The code serves three purposes: it is the
primary example for how to develop a data service, it
is used to test correctness of the Nessie APIs, and we
use it to evaluate network performance of the Nessie
protocols.

Creating the transfer-service requires the following
three steps:

1. Define the functions and their arguments.

2. Implement the client stubs.

3. Implement the server.

5.1 Defining the Service API
To properly evaluate the correctness of Nessie, we
created procedures to transfer data to/from a remote
server using both the control channel (through the
function arguments or the result structure) and the
data channel (using the RDMA put/get commands).
We defined client and server stubs for the following
procedures:

xfer_write_encode Transfer an array of data struc-
tures to the server through the procedure argu-
ments, forcing the client to encode the array be-
fore sending and the server to decode the array
when receiving. We use this method to evaluate
the performance of the encoding/decoding the
arguments. For large arrays, this method also
tests our two-phase transfer protocol in which
the client pushes a small header of arguments
and lets the server pull the remaining arguments
on demand.

xfer_write_rdma Transfer an array of data struc-
tures to the server using the data channel.
This procedure passes the length of the ar-
ray in the arguments. The server then “pulls”
the unencoded data from the client using the
nssi_get_data function. This method evalu-
ates the RDMA transfer performance for the
nssi_get_data function.

/∗ Data s t r u c t u r e to t r an s f e r ∗/
struct data_t {

int int_val ; /∗ 4 by t e s ∗/
f loat f l oa t_va l ; /∗ 4 by t e s ∗/
double double_val ; /∗ 8 by t e s ∗/

} ;

/∗ Array o f data s t r u c t u r e s ∗/
typedef data_t data_array_t<>;

/∗ Arguments f o r xfer_write_encode ∗/
struct xfer_write_encode_args {

data_array_t array ;
} ;

/∗ Arguments f o r xfer_write_rdma ∗/
struct xfer_write_rdma_args {

int l en ;
} ;

. . .

Figure 4: Portion of the XDR file used for a data-
transfer service.

xfer_read_encode Transfer an array of data struc-
tures to the client using the control channel.
This method tells the server to send the data
array to the client through the result data struc-
ture, forcing the server to encode the array before
sending and the client to decode the array when
receiving. This procedure evaluates the perfor-
mance of the encoding/decoding the arguments.
For large arrays, this method also tests our two-
phase transfer protocol for the result structure in
which the server pushes a small header of the re-
sult and lets the client pull the remaining result
on demand (at the nssi_wait function).

xfer_read_rdma Transfer an array of data struc-
tures to the client using the data channel. This
procedure passes the length of the array in
the arguments. The server then “puts” the
unencoded data into the client memory using
the nssi_put_data function. This method eval-
uates the RDMA transfer performance for the
nssi_put_data function.

Since the service needs to encode and decode re-
mote procedure arguments, the service-developer has
to define these data structures in an XDR file. Fig-
ure 4 shows a portion of the XDR file used for the
data-transfer example. XDR data structure defini-
tions are very similar to C data structure definitions.
During build time, a macro called “TriosProcessXDR”
converts the XDR file into a header and source file

8

int xfer_write_rdma (
const n s s i_ s e r v i c e ∗ svc ,
const data_array_t ∗ arr ,
n s s i_reques t ∗ req)

{
xfer_write_rdma_args args ;
int nbytes ;

/∗ the only arg i s s i z e o f array ∗/
args . l en = arr−>data_array_t_len ;

/∗ the RDMA bu f f e r ∗/
const data_t ∗buf=array−>data_array_t_val ;

/∗ s i z e o f the RDMA bu f f e r ∗/
nbytes = args . l en ∗ s izeof (data_t) ;

/∗ c a l l the remote methods ∗/
nss i_ca l l_rpc (svc , XFER_WRITE_RDMA_OP,
&args , (char ∗) buf , nbytes ,
NULL, req) ;

}

Figure 5: Client stub for the xfer_write_rdma method
of the transfer service.

that call the XDR library to encode the defined data
structures. TriosProcessXDR executes the UNIX tool
“rpcgen” the remote procedure call protocol compiler
to generate the source and header files.

5.2 Implementing the client stubs

The client stubs provide an interface between the
client application and the remote service. In most
cases, the client stubs do nothing more than initial-
ize the RPC arguments, and call the nssi_call_rpc
method. For RDMA operations, the client also has
to provide pointers to the appropriate data buffers so
the RDMA operations know where to put or get the
data for the transfer operation. The details of con-
verting the buffer pointers to memory descriptors for
a specific data transport (e.g., InfiniBand, Portals,
Gemini) are hidden from the user.

Figure 5 shows the client stub for the
xfer_write_rdma method. Since the nssi_call_rpc
method is asynchronous, the client has to check for
completion of the operation by calling the nssi_wait
or nssi_test method with the nssi_request as an
argument.

5.3 Implementing the server

The server consists of some initialization code along
with the server-side API stubs for any expected re-
quests. Each server-side stub has the form described

int xfer_write_rdma_srvr (
const unsigned long request_id ,
const NNTI_peer_t ∗ c a l l e r ,
const xfer_pul l_args ∗ args ,
const NNTI_buffer_t ∗data_addr ,
const NNTI_buffer_t ∗ res_addr)

{
const int l en = args−>len ;
int nbytes = len ∗ s izeof (data_t) ;

/∗ a l l o c a t e space f o r the b u f f e r ∗/
data_t ∗buf = (data_t ∗) mal loc (nbytes) ;

/∗ f e t c h the data from the c l i e n t ∗/
nssi_get_data (c a l l e r , buf , nbytes ,

data_addr) ;

/∗ send the r e s u l t to the c l i e n t ∗/
rc = nss i_send_resu l t (c a l l e r , request_id ,

NSSI_OK, NULL, res_addr) ;

/∗ f r e e b u f f e r ∗/
f r e e (buf) ;

}

Figure 6: Server stub for the xfer_write_rdma method
of the transfer service.

in Figure 6. The API includes a request identifier, a
peer identifier for the caller, decoded arguments for
the method, and RDMA addresses for the data and
result. The RDMA addresses allow the server stub
to write to or read from the memory on the client.
In the case of the xfer_write_rdma_srvr, the stub has
to pull the data from the client using the data_addr
parameter and send a result (success or failure) back
to the client using the res_addr parameter.

For complete details on how to create the transfer
service code, refer to the online documentation or the
source code in the trios/examples directory.

6 Evaluation
As mentioned earlier in the text, we often use the
transfer service as a microbenchmark to evaluate the
correctness and performance of the Nessie network
protocols. In this section, we specifically focus on per-
formance on Gemini-based sytems, particularly the
Cray XE6 Cielo system shared by Los Alamos Na-
tional Laboratory (LANL) and Sandia National Lab-
oratories (SNL).

The first result evaluates the overhead of the XDR
encoding scheme used by Nessie by comparing the
performance of xfer_write_encode with xfer_write_rdma.
As we discuss, Nessie provides a data path for bulk
transport of raw data, but it is possible to pass all

9

●●●●●●● ● ● ● ● ●
●

●

●

●

●
●

● ● ● ● ● ●

1KiB 32KiB 1MiB 32MiB

0
20

48
40

96
61

44

0
33

67
10

0
P

er
ce

nt
ag

e
of

 P
ea

k

Xfer Write Performance on Cielo

Bytes/Transfer

T
hr

ou
gh

pu
t(

M
iB

/s
)

Gemini Interconnect

● write−rdma
write−encode

Figure 7: Comparison of xfer-write-encode and xfer-
write-rdma on the Cray XE6 platform using the Gem-
ini network transport.

data through the request arguments, forcing the XDR
encoding of all transmitted data. As Figure 7 shows,
the overhead of encoding is quite large, which is
why we recommend passing as much data as possible
through the data port. The xfer_write_rdma method,
should have very little encoding overhead–just the
cost of encoding the request, so we were surprised
that it did not achieve better performance.

To further evaluate issues with the xfer_write_rdma
performance, Figure 8 shows the performance of the
xfer_read_rdma compared with xfer_write_rdma. This
experiment essentially evaluates the performance dif-
ference between the uGNI implementation of the one-
sided RDMA operations for PUT and GET. Since all
bulk data-transfer operations are server directed, a
xfer_read_rdma executes PUT rdma request from the
server to the client. Similarly, the xfer_write_rdma ex-
ecutes an GET operation, pulling the data from the
client to the server.

The results of Figure 8 show that while reads scale
fairly well, the writes only achieve about 1/3 of the
peak performance of the network. While the Gem-
ini port still requires some tuning, we did not expect
to see such a large difference between reads (PUTS)
and writes (GETs). We did not see this same differ-
ence in the InfiniBand and SeaStar ports for example,
illustrated in Figures 9(a)-and-9(b).

As another point of reference, we also implemented
a pure MPI version of transfer tests that uses MPI_Send,
and the one-sided MPI_Put, and MPI_Get functions.
Since we expect the MPI functions to be highly tuned
for the system (at least the two-sided functions), a

●●●●●●● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
● ●

1KiB 32KiB 1MiB 32MiB

0
20

48
40

96
61

44

0
33

67
10

0
P

er
ce

nt
ag

e
of

 P
ea

k

Xfer−uGNI Performance on Cielo

Bytes/Transfer

T
hr

ou
gh

pu
t(

M
iB

/s
)

Gemini Interconnect

● xfer−read (PUTs)
xfer−write (GETs)

Figure 8: Comparison of xfer_write_rdma and
xfer_read_rdma on the Cray XE6 platform.

comparison to MPI should give us an idea about
peak achievable performance. Figure 10 shows these
results. As expected, the implementation that uses
MPI_Send performs fairly well, but the one-sided func-
tions perform poorly. With all the synchronization
mechanisms implicit in the use of MPI one-sided calls,
and the fact that they are not highly used–inferring
that tuning the one-sided functions may not be a high
priority–we are not particularly surprised by these re-
sults.

It is clear that we need to further evaluate the
reason behind the poor performance in our use
of the GET operation on Gemini systems. The
xfer_write_rdma operation represents an important use
case for our applications, as writes are extremely im-
portant in large-scale applications, particularly for re-
silience (e.g., checkpoints). If we cannot improve the
GET performance, we may have to resort to rewriting
the NTTI implementation to use two-pass protocol
where the first operation tells the server to prepare
the buffers. In the second operation, the server would
tell the client when to PUT the data to the server-side
buffers.

7 Future Work

While current systems are able to support data ser-
vices, there are a number of improvements to system
software, programming models, and resilience that
could dramatically improve their utility.

The largest system-software change that would
improve the use of data services is that processor

10

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

xfer−write−rdma Performance on Red Storm

Bytes/Transfer

T
hr

ou
gh

pu
t (

M
B

/s
)

SeaStar Network

● 1 client
4 clients
16 clients
64 clients

32 1024 32768 1048576 33554432

0
51

2
10

24
15

36
20

48

0
25

50
75

10
0

P
er

ce
nt

ag
e

of
 P

ea
k

(a) RedStorm (Portals)

● ● ● ●

●

●

●

● ● ●

1 32 1024 32768 1048576

0
51

2
10

24
15

36
20

48

0
25

50
75

10
0

P
er

ce
nt

ag
e

of
 P

ea
k

xfer−write−rdma Scaling Performance on RedSky

Bytes/Transfer

T
hr

ou
gh

pu
t(

M
iB

/s
)

InfiniBand Network

● 1 client
4 clients
16 clients
64 clients

(b) RedSky (InfiniBand)

Figure 9: Performance of xfer_write_rdma on Seastar (Portals) and InfiniBand interconnects. In these exper-
iments, we evaluated performance as the number of clients-per-server ranges from 1–64.

●●●●●●● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
● ●

1KiB 32KiB 1MiB 32MiB

0
20

48
40

96
61

44

0
33

67
10

0
P

er
ce

nt
ag

e
of

 P
ea

k

Xfer−uGNI Performance on Cielo

Bytes/Transfer

T
hr

ou
gh

pu
t(

M
iB

/s
)

Gemini Interconnect

● xfer−read (PUTs)
xfer−write (GETs)

Figure 10: Comparison of xfer_write_rdma and
xfer_read_rdma on the Cray XE6 platform.

scheduling mechanism. Large-scale HPC systems pri-
marily use a static approach to resource scheduling.
Nodes are typically allocated using a batch sched-
uler and the algorithms for placement within those
nodes are often tuned for application communication
patterns. A more flexible, dynamic, scheduling ap-
proach that allows for dynamic allocation and recon-
figuration would allow the application to deploy ser-
vices on demand and tune the service size to balance
the resources. In addition, placement of services is
important to avoid network contention between the
data service and the application [28, ?].

There is also opportunity for improvements in pro-
gramming models to support data services. First,
there are no standard interfaces for RDMA-based
inter-application communication among the HPC in-
terconnect vendors. Much of our development work
with NTTI is to provide this capability. In addition,
there are no standard programming approaches for
services themselves. Each research project has their
own ad-hoc approach that works, but it seems that
a more standard approach could improve deployment
in production environments.

Finally, the use of data services creates a resilience
issue that needs to be addressed. We are promoting
the change from appliation work flows that store in-
termediate results in storage to a data service model
where intermediate data is stored in memory of other
nodes. This creates consistency and resilience issues
when there is a failure in the data service. Sandia is
actively involved in addressing this issue.

11

8 Summary
The increasing interest in using data services, data
staging, and in-situ analysis is clearly a sign that
these types of approaches are expected to be common
on next-generation, and even current-generation sys-
tems. This paper presents one approach, Nessie, and
describes its performance on the Cray XE6 system.

Our use of MPMD mode to enable data services is
unique among data-service and data staging projects.
In this case, it was necessary to enable us to overcome
the security-model constraints inherent in the Gemini
network. However, MPMD may turn out to be a con-
venient and portable way to deploy data services in
production environments. Our CommSplitter library
allows legacy applications to use data services with
almost no change to the source, and we are working
on a pure MPI implementation of NTTI that would
enable us to take advantage of highly tuned MPI im-
plementations.

We also identified some performance issues related
to the uGNI GET operation. As the GET operation
is critical for efficient writes using a server-directed
approach, we expect to work with Cray to figure out
the issue, and possibly put sufficient time toward
rewriting NTTI in a way that avoids the GET op-
eration.

9 Acknowledgements
Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corpora-
tion, a wholly owned subsidiary of Lockheed Mar-
tin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

This work of authorship was prepared as an ac-
count of work sponsored by an agency of the United
States Government. Accordingly, the United States
Government retains a nonexclusive, royalty-free li-
cense to publish or reproduce the published form of
this contribution, or allow others to do so for United
States Government purposes. Neither Sandia Cor-
poration, the United States Government, nor any
agency thereof, nor any of their employees makes any
warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Sandia

Corporation, the United States Government, or any
agency thereof. The views and opinions expressed
herein do not necessarily state or reflect those of San-
dia Corporation, the United States Government or
any agency thereof.

References

[1] Hasan Abbasi, Greg Eisenhauer, Matthew Wolf,
Karsten Schwan, and Scott Klasky. Just in time:
adding value to the io pipelines of high per-
formance applications with jitstaging. In Pro-
ceedings of the 20th international symposium on
High performance distributed computing, HPDC
’11, pages 27–36, New York, NY, USA, 2011.
ACM.

[2] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer,
Scott Klasky, Karsten Schwan, and Fang Zheng.
Datastager: scalable data staging services for
petascale applications. In Proceedings of the 18th
IEEE International Symposium on High Per-
formance Distributed Computing, pages 39–48,
Garching, Germany, 2009. ACM Press.

[3] Sean Ahern, Arie Shoshani, Kwan-Liu Ma, et al.
Scientific discovery at the exascale. Report from
the DOE ASCR 2011 Workshop on Exascale
Data Management, Analysis, and Visualization,
February 2011.

[4] R. Alverson, D. Roweth, and L. Kaplan. The
Gemini system interconnect. In Proceedings
of the 18th Annual Symposium on High Per-
formance Interconnects (HOTI), pages 83–87,
Mountain View, CA, August 2010. IEEE Com-
puter Society Press.

[5] InfiniBand Trade Association. InfiniBand Archi-
tecture Specification, Release 1.2, October 2004.

[6] Ron Brightwell, Kevin Pedretti, Keith Under-
wood, and Trammell Hudson. SeaStar intercon-
nect: Balanced bandwidth for scalable perfor-
mance. IEEE Micro, 26(3):41–57, 2006.

[7] Ron Brightwell, Rolf Riesen, Bill Lawry, and
Arther B. Maccabe. Portals 3.0: protocol build-
ing blocks for low overhead communication. In
Proceedings of the International Parallel and
Distributed Processing Symposium, page 268,
Fort Lauderdale, FL, April 2002. IEEE Com-
puter Society Press.

12

[8] William J. Camp and James L. Tomkins. The
red storm computer architecture and its im-
plementation. In The Conference on High-
Speed Computing: LANL/LLNL/SNL, Salishan
Lodge, Glenedon Beach, Oregon, April 2003.

[9] Hank Childs. Architectural challenges and so-
lutions for petascale postprocessing. Journal of
Physics: Conference Series, 78(1):012012, 2007.

[10] Ciprian Docan, Manish Parashar, and Scott
Klasky. Dataspaces: an interaction and coordi-
nation framework for coupled simulation work-
flows. In Proceedings of the 19th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing, pages 25–36, Chicago, IL,
June 2010.

[11] Ciprian Docan, Fan Zhang, Manish Parashar,
Julian Cummings, Norbert Podhorszki, and
Scott Klasky. Experiments with memory-to-
memory coupling for end-to-end fusion simula-
tion workflows. In 2010 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid
Computing (CCGrid), pages 293–301, May 2010.

[12] National Center for Computational Science.
Adios: The adaptible io system.

[13] Howard Pritchardand Igor Gorodetsky. A uGNI-
based MPICH2 nemesis network module for
Cray XE computer systems. In Cray User Group
Meeting, Fairbanks, Alaska, May 2011.

[14] Luke Gosink, John Shalf, Kurt Stockinger, Kesh-
eng Wu, and Wes Bethel. HDF5-Fastquery: Ac-
celerating complex queries on HDF datasets us-
ing fast bitmap indices. In In SSDBM, pages
149–158, 2006.

[15] Chris Johnson, Robert Ross, et al. Visualiza-
tion and knowledge discovery. Report from the
DOE/ASCR Workshop on Visual Analysis and
Data Exploration at Extreme Scale, October
2007.

[16] David Kotz. Disk-directed I/O for MIMD mul-
tiprocessors. In Hai Jin, Toni Cortes, and Ra-
jkumar Buyya, editors, High Performance Mass
Storage and Parallel I/O: Technologies and Ap-
plications, chapter 35, pages 513–535. IEEE
Computer Society Press and John Wiley & Sons,
New York, NY, 2001.

[17] S. Ku, C. S. Chang, M. Adams, E. D Azevedo,
Y. Chen, P. Diamond, L. Greengard, T. S.
Hahm, Z. Lin, S. Parker, H. Weitzner, P. Wor-
ley, and D. Zorin. Core and edge full-f ITG

turbulence with self-consistent neoclassical and
mean flow dynamics using a real geometry par-
ticle code XGC1. In Proceedings of the 22th In-
ternational Conference on Plasma Physics and
Controlled Nuclear Fusion Research, Geneva,
Switzerland, 2008.

[18] Sriram Lakshminarasimhan, Neil Shah,
Stephane Ethier, Scott Klasky, Rob Latham,
Rob Ross, and Nagiza F. Samatova. Compress-
ing the incompressible with isabela: in-situ
reduction of spatio-temporal data. In Pro-
ceedings of the 17th international conference
on Parallel processing - Volume Part I, Euro-
Par’11, pages 366–379, Berlin, Heidelberg, 2011.
Springer-Verlag.

[19] Jay Lofstead, Scott Klasky, Karsten Schwan,
Norbert Podhorszki, and Chen Jin. Flexible IO
and integration for scientific codes through the
adaptable IO system (ADIOS). In CLADE 2008
at HPDC, Boston, Massachusetts, June 2008.
ACM.

[20] Jay Lofstead, Ron Oldfield, Todd Kordenbrock,
and Charles Reiss. Extending scalability of col-
lective I/O through Nessie and staging. In Pro-
ceedings of the 6th Parallel Data Storage Work-
shop, Seattle, WA, November 2011.

[21] Jay Lofstead, Fang Zheng, Scott Klasky, and
Karsten Schwan. Adaptable, metadata rich IO
methods for portable high performance IO. In
Proceedings of the International Parallel and
Distributed Processing Symposium, Rome, Italy,
2009.

[22] Bruce H. McCormick, Thomas A. DeFanti, and
Maxine D. Brown, editors. Visualization in Sci-
entific Computing (special issue of Computer
Graphics), volume 21. ACM Press, 1987.

[23] Kenneth Moreland, Ron Oldfield, Pat Marion,
Sebastien Joudain, Norbert Podhorszki, Venka-
tram Vishwanath, Nathan Fabian, Ciprian Do-
can, Manish Parashar, Mark Hereld, Michael E.
Papka, and Scott Klasky. Examples of in transit
visualization. In Proceedings of the PDAC 2011 :
2nd International Workshop on Petascale Data
Analytics: Challenges and Opportunities, Seat-
tle, WA, November 2011.

[24] NCAR and UCAR. Community earth system
model.

[25] Arifa Nisar, Wei-keng Liao, and Alok Choud-
hary. Scaling parallel I/O performance through

13

I/O delegate and caching system. In Proceedings
of the 2008 ACM/IEEE conference on Super-
computing, SC ’08, pages 9:1–9:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[26] Ron Oldfield. Efficient I/O for Computational
Grid Applications. PhD thesis, Dept. of Com-
puter Science, Dartmouth College, May 2003.
Available as Dartmouth Computer Science Tech-
nical Report TR2003-459.

[27] Ron Oldfield and David Kotz. Improving data
access for computational grid applications. Clus-
ter Computing, The Journal of Networks, Soft-
ware Tools and Applications, 9(1):79–99, Jan-
uary 2006.

[28] Ron A. Oldfield. Lightweight storage and overlay
networks for fault tolerance. Technical Report
SAND2010-0040, Sandia National Laboratories,
Albuquerque, NM, January 2010.

[29] Ron A. Oldfield, Sarala Arunagiri, Patri-
cia J. Teller, Seetharami Seelam, Rolf Riesen,
Maria Ruiz Varela, and Philip C. Roth. Model-
ing the impact of checkpoints on next-generation
systems. In Proceedings of the 24th IEEE Con-
ference on Mass Storage Systems and Technolo-
gies, San Diego, CA, September 2007.

[30] Ron A. Oldfield, Arthur B. Maccabe, Sarala
Arunagiri, Todd Kordenbrock, Rolf Riesen, Lee
Ward, and Patrick Widener. Lightweight I/O
for scientific applications. In Proceedings of the
IEEE International Conference on Cluster Com-
puting, Barcelona, Spain, September 2006.

[31] Ron A. Oldfield, Patrick Widener, Arthur B.
Maccabe, Lee Ward, and Todd Kordenbrock.
Efficient data-movement for lightweight I/O.
In Proceedings of the 2006 International Work-
shop on High Performance I/O Techniques and
Deployment of Very Large Scale I/O Systems,
Barcelona, Spain, September 2006.

[32] Ron A. Oldfield, David E. Womble, and Cur-
tis C. Ober. Efficient parallel I/O in seismic
imaging. The International Journal of High Per-
formance Computing Applications, 12(3):333–
344, Fall 1998.

[33] Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-
Liu Ma, and R. Latham. End-to-end study
of parallel volume rendering on the IBM Blue
Gene/P. In Proceedings of the International
Conference on Parallel Processing, pages 566–
573, Vienna, Austria, April 2009.

[34] Charles Reiss, Gerald Lofstead, and Ron Old-
field. Implementation and evaluation of a staging
proxy for checkpoint I/O. Technical report, San-
dia National Laboratories, Albuquerque, NM,
August 2008.

[35] Rolf Riesen, Ron Brightwell, Patrick Bridges,
Trammell Hudson, Arthur Maccabe, Patrick
Widener, and Kurt Ferreira. Designing and
implementing lightweight kernels for capabil-
ity computing. Concurrency and Computation:
Practice and Experience, 21(6):793–817, August
2008.

[36] R B Ross, T Peterka, H-W Shen, Y Hong, K-L
Ma, H Yu, and K Moreland. Visualization and
parallel I/O at extreme scale. Journal of Physics:
Conference Series, 125(1):012099, 2008.

[37] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak,
and M. Winslett. Server-directed collective I/O
in Panda. In Proceedings ofSupercomputing ’95,
page 57, San Diego, CA, December 1995. IEEE
Computer Society Press.

[38] Venkatram Vishwanath, Mark Hereld, Vitali
Morozov, and Michael E. Papka. Topology-
aware data movement and staging for I/O ac-
celeration on Blue Gene/P supercomputing sys-
tems. In Proceedings of 2011 International Con-
ference for High Performance Computing, Net-
working, Storage and Analysis, SC ’11, pages
19:1–19:11, New York, NY, USA, 2011. ACM.

[39] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee,
S. Ethier, J. L. V. Lewandowski, G. Rewoldt,
T. S. Hahm, and J. Manickam. Gyro-kinetic sim-
ulation of global turbulent transport properties
in tokamak experiments. Physics of Plasmas,
13:092505, September 2006.

[40] Fang Zheng, Hasan Abbasi, Ciprian Docan,
Jay Lofstead, Scott Klasky, Qing Liu, Manish
Parashar, Norbert Podhorszki, Karsten Schwan,
and Matthew Wolf. PreDatA - preparatory
data analytics on Peta-Scale machines. In Pro-
ceedings of the International Parallel and Dis-
tributed Processing Symposium, pages 1–12, At-
lanta, GA, April 2010.

14

