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Abstract—Current exascale computing projections suggest
rather than a monolithic simulation running for the majority of
the machine, a collection of components comprising the scientific
discovery process will be employed in an online workflow. This
move to an online workflow scenario requires knowledge that
inter-step operations are completed and correct before the next
phase begins. Further, dynamic load balancing or fault tolerance
techniques may dynamically deploy or redeploy resources for
optimal use of computing resources. These newly configured
resources should only be used if they are successfully deployed.

Our DT system offers a mechanism to support these kinds
of operations by providing database-like transactions with dis-
tributed servers and clients. Ultimately, with adequate hardware
support, full ACID compliance is possible for the transactions.
To prove the viability of this approach, we show that the
D’T protocol has less than 1.2 seconds of overhead using 4096
clients and 32 servers with good scaling characteristics using this
initial prototype implementation.

I. INTRODUCTION

As scientific application scale towards exascale, they will
incorporate more complex models that have previously only
been run as separate applications. For example, in fusion
science, simulation of the edge of the plasma [1] and the
interior of the plasma [2] are currently separate. To have a
more complete, accurate model for a fusion reactor, these
components will need to be tightly coupled to share the effects
between the two models. The CESM climate model [3] is
similar in that it incorporates atmosphere, ocean, land surface,
sea ice, and land ice through a coupling engine to manage the
interactions between each of these different systems yielding
a more accurate model of global climate. In most cases, these
and other scientific applications are part of larger offline work-
flows that process the output written to storage in phases that
ultimately yields insights into the phenomena being studied.
Current work to enable these coupling and workflow scenarios
are all focused on the data issues to resolve resolution and
mesh mismatches, time scale mismatches, and simply making
data available through data staging techniques [4]—[9]. In most
of these cases, each of the components are run using a separate
execution space for fault isolation and to aid in scalability.

In a similar vein, fault tolerance techniques must evolve to
offer more application stability in the face of faults without
relying solely on the storage system to store checkpoints.
The ever increasing ratio of compute speed to IO bandwidth
demands rethinking resilience to avoid using centralized disk-
based storage for periodic checkpoints. For example, dynamic

redeployment of new resources to replace failed components
could enable moving the application to a correct state to
enable continuing processing without having to redeploy the
code, read a checkpoint, and start processing again. Similar
to deploying resources for fault tolerance, load balancing and
system reconfiguration tasks [10], [11] support dynamically
varying the amount of resources dedicated to different com-
ponents based on the application needs, machine performance
characteristics, and resources available. For both the code cou-
pling/online workflows cases and the fault tolerance/dynamic
reconfiguration scenarios, a key feature is missing.

For an operation to proceed that depends on external re-
sources, such as a coupled code waiting for external data
or waiting for deployment of additional resources for fault
tolerance or load balancing, some mechanism to know that
the operation is both complete and correct is necessary. We
propose adopting a transaction mechanism similar to what
is offered in databases, but adapted to the highly distributed
environment of parallel computing. The database community
has solved how to perform distributed transactions, but with a
limitation that makes them insufficient for parallel computing:
1 client to N servers precludes having a collection of clients
performing a collective operation to participate in a single
transaction. For the HPC environment, particularly for these
more general scenarios, this is too limiting to be useful. This
paper extends the idea of distributed transaction such that they
are doubly distributed, i.e., distributed on both the client and
server sides, dubbed D2T.

The D?T protocol aims to offer full ACID-style guarantees
for the encapsulated operations. While this is certainly possible
with adequate hardware particularly to support the durability
guarantee, this initial work shows that such a system can
be built that supports most of the ACID-style guarantees
with current hardware, what the performance impact will
be, application coding implications, and begin to address the
scalability challenges so that it is applicable for exascale-
sized platforms. More specifically, D’T can address both the
code coupling/online workflow/data staging as well as the fault
tolerance/system reconfiguration scenarios.

Through the D?T protocol, we enable data staging to
move from hiding IO costs or to performing some “in-flight”
processing into a way to move offline workflows into online
workflows that eliminate, or at least greatly reduce, the use of
slow, centralized, persistent storage resources while addressing
much of the functionality loss of losing the persistent storage



intermediate. Further, it offers a standardized mechanism for
fault tolerance/system reconfiguration tasks to prevent prema-
ture or incorrect use of resources by the existing system. Since
the goal of ensuring an operation is both complete and correct
is shared between both scenarios, this single protocol can be
used for both simplifying programming.

Our initial approach aims for a complete, rather than optimal
protocol. Ongoing efforts are identifying which messaging can
be eliminated or combined without loss of guarantees as well
as other optimizations. This initial approach adds a few extra
rounds of messages during an operation to coordinate the
transaction state. By inserting a small amount of additional
metadata in these messages, we are able to track the state
of the transaction and related operation triggering appropriate
actions at the correct times.

The remainder of this paper is organized as follows. Sec-
tion II presents a short overview of the related work. We
introduce the D?T protocol in Section IIl. We next present
our initial implementation in Section IV. This includes a
description of the failure modes we are considering and some
general information about how they are addressed. Section V
describes our validation experiments and the generated results
while Section VI presents our conclusion.

II. RELATED WORK

The concept of distributed transactions [12] has been around
for decades. By developing a protocol for managing a col-
lection of distributed resources for an atomic operation has
offered tremendous benefits for scalability and the diversity
of applications using the technology. The extension of this
technology to address distributed clients working in concert,
while not critical for the core database area, is crucial for HPC
applications given the massively parallel nature of the modern
HPC environment.

ZooKeeper [13] and other Paxos [14] implementations have
a superficial similarity to our D?T protocol in that they
provide the consistency and synchronization mechanisms for
messaging to a collection of servers from a distributed set of
sources. Under the hood, Paxos is solely 1xN with an eventual
consistency model. The inherent assumption that an update or
insert originates from a single source limits the applicability
of the protocol for this environment.

GridFTP [15] extends traditional FTP to provide reliable
high-performance, parallel data movement in a grid computing
environment. Beyond the limitation of GridFTP to data move-
ment, DT is designed to be used in a time-critical environment
rather than before or after the simulation run. D?T is also
designed to scale to potentially millions of cores on one side
communication with thousands on the other and protect users
from incomplete or incorrect data.

Sinfonia [16] is designed so that nodes can share data
scalably and fault-tolerant while shielding the developer from
the message passing paradigm. To do this, Sinfonia defines a
“mini-transaction” primitive that allows applications to manip-
ulate distributed state in a consistent and fault-tolerant manner.
Sinfonia’s notion of a distributed transaction differs from ours
in that Sinfonia employs 1xN semantics where as we need
MxN semantics.

Yahoo!’s PNUTS [17] is a large-scale distributed data
store designed to run in geographically distinct locations that
organizes the data store into ordered tables and aims to provide
per-record consistency guarantees. This work lacks the MxN
semantics required for our scenarios and uses an eventual
consistency model inappropriate for the HPC environment.

While Cassandra [18] and G-Store [19] have provided novel
contributions for their intended use cases, they fall short for
our needs in a few ways. First, distributed transactions for
these systems employ traditional 1xN semantics where as
we require MxN semantics. Second, the eventual consistency
model will not work for the HPC environment as allowing
analysis or visualization tools to operate on stale data is useless
and expensive. Further, given the limited resources available in
the computation area, updates must be made quickly to reduce
the memory requirements for any staging area.

Not mentioned, but fairly universal in these and related tools
is the use of a disk-based log. While this likely could be
removed in these systems with a relaxed level of durability, it
is currently not an optional feature of these systems.

III. THE D?T PROTOCOL

The DT protocol provides the necessary extensions to
traditional distributed transactions to afford extension to dis-
tributed clients as well as distributed servers, hence the doubly
distributed transactions. Figure 1 presents an abstract model
representing how this protocol works.

To handle a collection of operations as a single transaction
in such a highly parallel environment, a simple, single level
transaction is inadequate because we need to spend some
effort to manage the set of clients and servers to ensure that
each operation is complete and correct. D?T provides a two-
level system where a master transaction represents the entire
collection of operations comprising the atomic whole and the
sub-transactions represent the individual component operations
that should be handled as a unit. In Figure 1, the color of
the arrows categorize what that logical message represents.
The master transaction messages are represented in the pink
color, the sub-transaction messages are green, while the actual
operation being wrapped in the sub-transaction is blue. It is
expected there will be a series of sub-transactions represented
by the green-blue-green series of messages/events in the figure.

A. Logical Protocol

Logically, the client side coordinates to agree upon the
transaction parameters such as an ID and which client(s) and
server(s) are part of the overall transaction. This information is
communicated to the server side initializing any expectations
such as buffers and identifying the group of servers partici-
pating in this collection of operations. Once the servers have
initialized this transaction, they respond that they are ready.
Next, the clients perform a series of sub-transactions. This
affords the opportunity to isolate a single action and offers an
opportunity to retry failures before giving up entirely. Finally,
assuming everything has worked properly up to this point, the
clients coordinate with the servers to commit the operation(s)
and close the transaction. This will allow cleaning up any
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buffers, performing any cleanup operations such as deallocat-
ing replaced components, making new resources available to
clients, or cleaning up other resources allocated to handle this
transaction.

The logical protocol is described in more detail below giving
details and explanation for why each piece and necessary and
how it contributes to the overall goals of DT.

1) Initialization Phase: The clients initialize a transaction
with the participating servers. The clients then initialize,
potentially asynchronously, a number of sub-transactions. This
phase is indicated by the begin_tx and begin_sub_tx
messages in Figure 1 (the pink and green arrows at the top).

2) Operation Phase: The clients perform the operations for
which they have initialized sub-transactions such as writing
data, reading data, or performing a configuration change such
as a resource deployment or cleanup. This is indicated by
the operation message in Figure 1 (the blue arrows).
The client subordinates directly perform the operations with
the participating server resources. This phase, along with the
Request Commit Phase will be repeated for each operation
that is part of the overall transaction.

3) Request Commit Phase: This is a global coordination
to determine if the sub-transaction is successful or should be
aborted. How this is determined is based on the kind of opera-
tion performed. If it is a data output, then a count of processes
and maybe a collection of checksums and/or total data sizes
may be sufficient. If it is a system reconfiguration, some status
indicator showing that a set of services are now available may
be required. This is seen by the req_commit_sub_tx and
commit_sub_tx messages (the green arrows in the middle
of the figure).

4) Finalize Phase: Once all of the sub-transactions are
complete, the overall transaction can be finalized to persist and
expose the changes and operations performed as part of the
transaction. The commit or abort for the transaction depends
on whether or not all sub-transactions have completed success-
fully. This will include the ability to update any data storage
or resource directory to reflect the completed transaction. This
is seen in the req_commit_tx and commit_tx messages
(the pink arrows at the bottom of the figure).

IV. INITIAL PROTOCOL IMPLEMENTATION

The logical protocol is straightforward, but not scalable. The
communication volume between the clients and the servers
is a Cartesian product of the number of clients and servers
making it grow very quickly as the scenario scales. In an
effort to perform some initial measurements and determine
where the real problems may be for scalability, some initial
decisions are made for this first implementation that may or
may not prove correct at scale. Ultimately, these decisions are
being revisited to verify the scalability and performance as
the implementation evolves. None of these initial decisions
are necessarily inherent to the protocol itself and are largely
a reflection of the development environment.

The first decision attempts to address the scalability of
the coordination communication between the clients and the
servers. This implementation aggregates this communication



through a coordinator process on each side. This dramatically
reduces the message volume between clients and servers,
but at a cost. The single coordinating process on each side
is a new single point of failure that introduces additional
failure modes that must be addressed. While the complication
in failure modes causes additional implementation work, the
current implementation’s use of timeouts and voting for new
coordinators on failures can adequately address these compli-
cations without undue problems. The single coordinator also
only reduces the messaging load and does not fully solve
the scalability challenge of coordination messaging between
clients and servers. At scale, even a single, small message
from each client to the coordinator is likely to cause both
a count and aggregate size overload for a single process to
handle. Several techniques, such as aggregation trees [20] and
using a subset of processes for coordination, can address the
messaging problem and are being investigated for the next
iteration of the implementation.

The second decision is the choice of NSSI, further described
in Section V-A, to communicate between the clients and
servers and MPI to implement the messaging among the clients
or servers. Directly related to this decision is the performance
impact of using two different communication mechanisms to
and attempting to detect messages. Indirectly related to this
decision is the impact on programming models for a shared
services-style application. Both of these are discussed in detail
in Section V-B.

Others decisions give a stronger base for future work with
D?T. For example, the use of NSSI to communicate between
clients and servers offers the advantage of separate process
spaces for the clients and the servers. This isolates faults
in the server area or in the client area from the other side.
This affords clients continuing even if a server process has
failed, improving the fault tolerance of the system. The use
of timeouts to detect faults, while it may prove problematic
at scale, is another example of a decision that is intended to
survive the evolution of the implementation.

A. Global Protocol Decisions

For our initial implementation, a few simplifying assump-
tions are made. First, all client processes participate in all
transactions and sub-transactions. The bookkeeping required
to track a subset of processes was deemed optional because
this implementation is intended to give insights into scaling
and will focus on the highest message volume case. Second,
all client processes are in sync in terms of transaction and sub-
transaction IDs avoiding additional communication needed for
the clients to agree upon a set of valid IDs. In practice, the
clients will likely be able to predict these IDs rather than
having to coordinate every time. For example, an output action
is typically done by a fixed set of processes allowing each to
keep a private counter for the current transaction ID. As a
motivating example, scientific simulations typically work on a
number of large arrays where each process is performing some
computation on the local portion of the array values. At each
output step, the processes write any number of variables, some
of which are the local pieces of global arrays while others

which are single value variables. Additionally, some metadata
will be written, such as which portion of the global array this
process is writing and how many elements are in this local
portion of the global array. This information can later be used
to index the data making it available for queries.

These simplifying assumptions, however, are not inherent
to DT, but just for the initial implementation to generate
initial measurements to reveal the scalability bottlenecks of
distributed MxN transactions. As the system evolves, these
assumptions are being relaxed to expand the variety of ap-
plications supported and to support more complex patterns.
Ultimately, this protocol will be sufficiently general to be used
for a wide variety of tasks, particularly complex data move-
ment such as what is performed by adaptive mesh refinement
codes as well as non-data movement activities that should be
protected in an atomic operation.

The initial technique to detect a failed process in either the
clients or servers is through a timeout. If at any time during
this transaction process a timeout occurs, a subordinate aborts
the sub-transaction or transaction locally and informs the
coordinator. The coordinator detects this abort and disperses
the message accordingly.

B. Implementation Details

As outlined above, D?T consists of four phases for a
transaction. Each of these is discussed in detail below in the
context of how it exists in the current, initial implementation.

1) Initialization Phase: The initialization phase is repre-
sented by the begin_tx message in Figure 1. This consists
of all of the clients participating in the transaction coordinating
with the server processes that are participating. To accomplish
this in the current implementation, the participating clients
synchronize with the client coordinator, this is forwarded to
the server coordinator. Next, the server coordinator notifies the
participating server processes collecting OK messages. If all
server processes respond, this is forwarded back to the client
side coordinator.

If the initial coordination creating the master transaction is
successful, the client coordinator can then initialize a sequence
of sub-transactions with the server coordinator each represent-
ing an operation, such as writing a variable or allocating some
system resources. The process is similar for sub-transaction
initialization, but with the addition of an extra identifier field.

2) Operation Phase: The operation phase involves per-
forming the sub-transactions and the operations they wrap,
symbolized by the operation message in Figure 1. After
receiving a success message for each sub-transaction initial-
ization, the client coordinator informs its subordinates that it
can start the operation(s) for each of these sub-transactions.
The client subordinates can then start.

It should be noted here, that since every client processes is
participating in a given sub-transaction and that it is unlikely
for an application to want to proceed if only some sub-
transactions can be instantiated and others cannot, it might be
possible for the client coordinator to disperse a single success
message to its coordinates. This is possible because of the
assumptions mentioned above, however, in the future, it will



provide the application with the flexibility for some processes
to create sub-transactions on the fly. A common use-case for
this is the automatic mesh refinement (AMR) applications
where some events are triggered on a sub-set of the processes
causing those processes to have additional output.

3) Request Commit Phase: After each process completes
the operation(s), the client coordinator asynchronously issues
to the server coordinator a req_commit_sub_tx request
for each sub-transaction. The server then validates that the sub-
transactions were completed successfully with the participat-
ing servers. The server coordinator then responds to the client
side saying it is ready to commit using the commit_yes
message (or commit_no for failure). When the client coordi-
nator receives a commit_yes message, it then broadcasts this
message to the subordinates. The subordinates now mark their
internal data structures that this sub-transaction is ready to
commit and respond to the client coordinator with an OK mes-
sage, identifying that the client subordinates can commit the
sub-transaction. If the client coordinator then receives an OK
message from each subordinate, the client coordinator sends
the commit_yes message to the server coordinator. Another
round of messages occurs on the server side to perform the
actual commit operation for the sub-transactions and a final
OK or error message is sent back to the client coordinator; this
message is then dispersed to the subordinates. This completes
the sub-transactions leaving the overall transaction ready for
completion or abort.

4) Finalize Phase: After the request commit phase for the
sub-transactions, the application can commit or abort the entire
master transaction. If all sub-transactions have completed suc-
cessfully, then it is natural to commit the transaction. However,
if some sub-transactions did not complete, the application can
make a decision as to whether or not to continue with a partial
success or not, as it now knows which sub-transactions were
problematic. Perhaps it could attempt to redo those operations
or it could end up aborting the entire transaction all together. It
may also be the case that having some servers fail that were
scheduled to be decommissioned as part of the transaction
safely can be ignored. The procedure for voting on a main-
transaction is similar to the voting in the sub-transactions with
a few rounds of messages and a final message between the
client and server coordinators. A further wrinkle with this
round of messages is the possibility that the servers involved
in one of the sub-transactions successfully completed early
sub-transactions, but failed later sub-transactions. This outer
transaction loop affords an opportunity to manage the sub-
transactions as a group so that decisions affecting the earlier
sub-transactions can be managed as a part of the greater
transaction. Once this phase completes, the operation(s) are
both complete and correct and can be safely revealed to the
rest of the system.

C. Applying to Motivating Examples

Given the described protocol and implementation, it is
important to map these ideas back to the motivating examples
so that we demonstrate how the ideas address these issues.
First, we describe the role and function of DT in online

workflows and code coupling. Then, we describe how dynamic
system reconfiguration for fault tolerance or load balancing
can be enhanced through using these techniques.

1) Online Workflows and Code Coupling: The initial work
for data staging and code coupling is evolving towards online
workflows and incorporating tight, frequent data exchanges
between components. Towards that end, the functionality and
much of the safety offered by centralized persistent storage
must be addressed to help users trust moving online.

In the simple case of just moving data to a staging area
for processing or retrieval by another process, the master
transaction represents an entire data output event, such as a
data dump for analysis, while the sub-transaction represents an
individual variable from one or more participating processes.

At a detailed level, many other attributes must be consid-
ered. For example, since not all variables being output will be
distributed across all processes in the D?T, some additional
features are required. To handle variables distributed on a
proper subset of processes participating in the transaction, the
setup for each sub-transaction specifies the number of clients
that will participate for this sub-transaction. In a security
suspect environment, the list of participating clients could be
included to afford verifying a client is expected. Either of these
approaches tells servers how many clients to expect rather than
expecting all clients to participate. On the server side, this
information can be used to determine if all expected clients
have sent data or not. This also affords the opportunity for
automatic mesh refinement codes with multiple levels that are
distributed across a subset of the processes, but likely more
than a single process.

Once the single data staging interface with transactions is
complete, the next step towards online workflows requires
handling a read and lock a data set, process it, and then write
the processed data and delete the original. More concretely, for
the CTH shock physics code in use at Sandia, if the raw data
were written to a staging area using transactions, the next step
would be to distill that data down to a list of fragments. To
do this, the raw data needs to be read, marked as in process
to prevent another parallel analysis process from accessing
it, distilled down to a list of fragments, persisted back to a
possibly different staging area, and if all of that was successful,
unlock and delete the original raw data and release the list
of fragments for further processing. This multi-stage process
incorporating potentially multiple staging areas is key to being
able to emulate the kind of functionality provided by using
centralized, persistent data storage between workflow steps. In
that case, the storage system offers some failure detection to
help manage the evolution of data through the workflow, but it
does not offer the way to hide/protect data to ensure improper
or early access to incomplete data. In that way, using D?Ts
are superior to using a storage system for an offline workflow.
The area where this is not true is persistence.

To handle persistence, it is possible to do one of several
things easily and still achieve the more convenient and higher
performance functionality offered by D?T. For example, data
could be stored to a node-local SSD or other storage class
memory, it could be replicated to other nodes, or even written
to centralized persistent storage. This last option is not ideal



for performance, but it is an option for data that may be critical
to protect. None of these options have been implemented in the
initial system. One of the next increments for this work is to
explore these persistence techniques to offer both options and
a variety of features that may vary depending on the platform.

2) Fault Tolerance and Load Balancing: System reconfig-
uration offers a very different example that ideally requires
similar transaction functionality. Much like the cross-staging
area transactions described above, system reconfiguration re-
quires interaction with potentially more than a single set of
‘server’ resources.

For a system reconfiguration action, such as replacing one
set of online resources with a new set of resources, the
setup of the new resources would be one sub-transaction
with the tear down being a second sub-transaction. In more
detail, a transaction is initiated to represent the reconfiguration
contacting all of the resources that are involved in some form
with this transaction. Then, a sub-transaction is initiated to
create a new set of resources. Once those resources have been
initialized and responded that they are ready, signaling the end
of that sub-transaction, the next step starts. The teardown of the
older resources is initialized as the next sub-transaction. This
requires a special case in that the teardown does not actually
cause these resources to be reclaimed. Instead, it triggers setup
of the shutdown process, even while these resources continue
to be used actively. Once this shutdown process is initialized,
finishing this sub-transaction, the metadata resources identi-
fying which resources to use is updated to remove the soon
to be decommissioned resources in a sub-transaction. Once
all of these are complete, including emptying any dependent
queues, the overall transaction can be completed. Once that is
done, the physical teardown of the old resources can be safely
triggered. This prevents clients from seeing the new resources
prior to these resources being properly initialized or from using
resources that should no longer be used. While a technique like
read-copy update [21] conceptually can offer some support for
similar operations, it is not intended to work outside of a single
node and would only apply to the metadata operation. It is
still necessary to manage the resource allocation and cleanup
beyond the metadata operation. Performing those operations
with a level of safety and in a structured way offers more
simplicity and a holistic solution to the macro operation.

D. Failure Modes

From the above protocol description, it can be imagined that
there are several failure scenarios that can occur at different
points in the protocol. Our system is designed to detect
these failure modes on both the client and server sides. An
examination of some of the potential failure modes is listed
below with a discussion of how each is either addressed in
the current implementation or in the design being fleshed out
over time in our experimental system.

For both the client and server sides, there are two possible
sources of failures: the coordinator and the subordinates. One
important feature is that if a failure is detected, the client side
has the ability to retry its transactions or sub-transactions and
even vote on a new coordinator should it be safe to continue

in a reduced capacity. For example, if during the write phase
of a data staging transaction, a staging server is determined to
be down, the client processes can retry the sub-transaction by
writing its data to a different server. Previous sub-transactions
could be aborted and retried if any of them used the now-failed
server as well, thus saving the overall transaction.

o Coordinator Failure: Should a coordinator fail, currently
the transaction as a whole will have to be aborted and
retried. Through the use of a timeout, either the clients
or the servers will detect that the coordinator is no
longer responding indicating a failure. When this timeout
occurs, a vote is held to select a new coordinator. For
simplicity, the lowest ranked process id or some other
automatic selection criteria implicit in the system can be
used. Once the new coordinator is selected, it will notify
the other side to reestablish the connection. Should this
communication fail due to a simultaneous failure on both
sides, a broadcast from the new coordinator to the other
side will establish the connection.

o Client/Server Failure: Far simpler than the coordinator
failing, either a client or server process is easier to handle.
The way a client or server process failure is detected
is during one of the following actions: i) a broadcast
or point-to-point message from the coordinator to the
process fails, ii) the coordinator has a timeout waiting for
a process to indicate that it has completed an operation,
and iii) the servers do not receive the expected connection
and tell the server coordinator an aggregate total that
is less than expected. In these cases, the coordinator
can abort the current sub-transaction and decide if it
should re-attempt the operation or abort the transaction
as a whole. It can also consider which process failed to
determine the potential impact on other sub-transactions
to manage the broader impact of the failure. If the failure
is on the server side, a retry from the client is possible. If
it is on the client side, the state of the component, such
as the simulation, as a whole needs to be considered. The
application may be in a state with the failure requiring a
restart from a checkpoint or some other resilience restart.

E. Mapping to ACID Properties

Since the term ‘transaction’ brings to mind the ACID prop-
erties, it is important to show how the D?T protocol achieves,
as much as possible, these properties. Since transactions are
most associated with databases, a data staging for an online
workflow scenario is used to show to what extent the ACID
properties are achieved.

Support for atomicity, consistency, and isolation is straight-
forward. The way these transactions prevent visibility of any
operation prior to the final commit prevents any other user
or transaction from seeing or using data in an in progress
transaction prematurely. By preventing visibility of the data
prior to the final commit, the data will be made visible as
an atomic action. For durability, the situation is a bit more
complex, but certainly possible. For example, storage class
memories on every node can offer a level of security as long
as a node does not completely disappear when a failure occurs.



For more security without this additional hardware, replication
to other nodes can be performed. There is additional overhead
associated with this additional data movement and storage,
but it should generally still be significantly faster and cheaper
than moving to centralized persistent storage. Each of these
techniques offers different benefits and costs not limited to
the level of catastrophic failures they can tolerate without any
loss. Overall, these techniques are not intended to necessarily
completely replace centralized persistent storage. Instead, they
are intended to replace as much usage of that slow, expensive
storage as possible for intermediate data with an online solu-
tion that will ultimately lead to a faster time to solution at less
cost.

F. What about BASE properties?

The BASE [22] properties of Basically Available, Soft State,
and Eventual Consistency offer a more scalable and flexible
model for many applications. The D*T techniques are intended
for a different environment than BASE properties can support.
For our example, the BASE property of eventual consistency
is sufficient if partial or outdated answers are sufficient for
results, such as for an Internet search engine. In our scenario,
we are focused on supporting online workflows and other
high performance and distributed computing operations. For
these scenarios, eventual consistency is insufficient. The lack
of a guarantee of when a system might be consistent limits
the decreased time to solution an online workflow offers.
The transaction overhead is outweighed by the increased
throughput of the online workflow. Moreover, this throughput
in the online workflow is only possible with guarantees about
data completeness and correctness. The BASE properties are
insufficient for maintaining this throughput.
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Fig. 2. Data Staging Overview

V. PERFORMANCE EVALUATION

To validate these ideas, two sets of experiments are per-
formed. The first set tests how the overheads affect perfor-
mance of a data staging scenario for an online workflow.
Included with this is an examination of the impact of using
two different messaging systems for the initial implementation.
The second set are micro-benchmarks to measure the overhead
of incorporating this overhead into a production system. This
is representative of the overhead in a system reconfiguration
scenario.

A. Experimental Setup

The experiments are performed on Sandia National Lab’s
RedSky unclassified machine. It is a Sun Blade center with
Sun X6275 blades containing 2823 nodes running Intel Xeon
5570 processors (8 cores each) with 12 GB of RAM per node
and QDR InfiniBand arranged in a 3-D toroidal mesh as the
communication fabric. RedSky is a capacity cluster intended to
run as many jobs as possible. Two communication APIs are
used: Open MPI and Sandia’s NSSI, an RPC package [23],
[24] recently added to Trilinos as part of the Trios IO compo-
nents that provides a simple API for an RPC mechanism that
can manage RDMA data movements. It has native drivers for
Portals, InfiniBand, and the new Cray Gemini networks.

The first set of experiments is designed to maintain a
128:1 ratio of clients to servers. This ratio is maintained for
tests from 128 to 4096 clients where 32 server processes are
employed. The experiments are performed 10 times for each
setup and show the mean of the time required for each phase.

B. Online Workflows Results

To test the kind of overhead involved in online workflows,
a payload size of 1 MiB is used. While larger payloads
are typical for HPC applications, this gives a baseline that
should be straightforward to extrapolate to larger payload
sizes. An idea of how to scale the payload sizes for the NSSI
protocol [25] on various platforms has been performed. The
results of the experiments using 1 MiB payloads are shown in
Figure 3.
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For this experiment a ratio of 128:1 clients to servers ratio

is maintained as it scales.



By isolating the NSSI from the MPI messaging and viewing
from the server side, the root cause of the overhead becomes
apparent as shown in Figure 4. This figure shows the percent-
age of the overhead directly attributable to the MPI messaging
as an artifact of the two messaging systems employed. First,
the polling interval causes delays in receipt of messages intro-
ducing as much as 100 ms of delay for a round-trip message.
This gives another reason why two messaging systems, beyond
the current failure model of MPI, that it should not be used
for this scenario—multiplexing between the two protocols to
discover waiting messages introduces tremendous overhead
compared to what would happen if a single mechanism were
employed. The negligible overhead exhibited by MPI on the
client side provides stronger evidence of this multiplexing
issue. While the client uses both protocols, it only uses NSSI
or MPI on an expected, rather than unexpected message basis
eliminating the polling interval. Second, based on the limita-
tions of which processes participate with each sub-transaction
for the server, and the inability to use MPI_Probe to detect an
MPI_Bcast message, individual MPI_Isend messages must be
used instead. This, unfortunately, prevents any optimizations
that may be implemented for efficient broadcasts from being
used for this scenario, such as the specialized networks on
the BlueGene platform. While the MPI 3 standard introduces
non-blocking collective communication, this is not an adequate
solution. The primary problem is that each process has no
knowledge of what message may arrive next since multiple
transactions may occur simultaneously. This would require
a collection of pre-posted non-blocking collective calls each
with associated buffers pre-allocated. While the number of
different possible messages is not prohibitively large, the
associated buffers of unknown size is too memory intensive
for our limited memory environment. With a working MPI
3 implementation, it will certainly be possible to make large
buffers and pre-post the collective calls and have it work, it
is not ideal for this scenario. The advantage MPI_Probe for
collective calls offers over the potential MPI 3 solution is the
ability to detect the message size waiting in the unexpected
message buffer and craft an accurately sized receive buffer.
This affords having all potential messages share a single buffer
rather than having to make individual buffers for each possible
message.

C. Fault Tolerance and System Reconfiguration Results

For these experiments, the overhead of D’>T messaging
is calculated for each of the phases. The operation phase
depends on the underlying communication infrastructure and
is independent of D?T. There is no significant data movement
as part of this example better representing the kind of overhead
involved in this style of non-data movement transactions. The
time the simulation spends at each phase of the protocol is
measured. The results are shown in Figure 5.

At 128:1, DT spends very little time executing the protocol,
as the server side does not have to poll or process any MPI
messages. The jump between 128:1 and 256:2 is largely due
to the introduction of subordinates on the server side. This
introduces a polling delay of (0, 100] milliseconds for a round
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trip MPI message based on the 50 ms poll interval. The slight
variations in time periods, i.e., the time being slightly lower
as the scale increases from 512 to 1024 client processes for
example, is because of the server polling rate of the servers.
As mentioned above, for a round trip message, anywhere from
(0, 100] milliseconds can be spent in between polling periods.
As the experiment scales, each phase of the protocol increases
at about the same rate as the other phases. This is because
the number of round trip messages and message sizes are
approximately the same, with only a few bytes difference.

D. General Discussion

As the results show, D2T does achieve good scalability;
doubling the core count does not result in a doubling of the
time the simulation spends in each phase of the protocol.
This is partially due to using MPI to communicate between
coordinator and subordinate, taking advantage of the efficiency
in the implementation of the MPI library. Eliminating MPI to
achieve fault tolerance and eliminate the delays will require
replicating the messaging efficiency inherent to the mature
MPI implementation.

Further improvements can be made to D*>T by adding differ-
ent optimizations, such as batching sub-transaction initializa-
tion requests or piggybacking messages on top of each other
as is done in Sinfonia [16]. For example, instead of creating
sub-transactions synchronously, it would be beneficial to allow
the simulation to create a large number of sub-transactions
at once and sending these requests in one message to the
server coordinator. Additional improvements could result from
piggybacking messages, for example, piggybacking the request
commit request of a sub-transaction with the operation sent in
the operation phase.

To coordinate the different message queues, the current
implementation must poll two queues. The first is for NSSI
messages and the second is for MPI messages. However, there
is some delay for how often the servers poll for MPI messages.
For these experiments, the servers check for MPI messages
approximately every 50 milliseconds. At higher intervals, the
delay time begins to dominate and overshadow the protocol
overheads as we scale in core count. Lowering this polling
duration too much will steal time away from the server polling
for NSSI messages. An initial set of quick tests suggests this
as a good initial value. Considering this timeout delay is not
intended to be a long-term solution no effort has been made



to exactly quantify what an ideal timeout delay would be
for different core counts and configurations. Given that MPI
is unlikely to be maintained for local messaging, it further
discourages attempting to quantify the best interval.

VI. CONCLUSIONS AND FUTURE WORK

This is very early results showing the potential of incor-
porating MxN doubly distributed transactions as a way to
enable online scientific application workflows or dynamic sys-
tem reconfiguration operations. We are extending this current
implementation to be able to read completed transactions out
of the staging area requiring at least a simple metadata system.
Existing metadata solutions will both inform and hopefully
supply a usable system for this purpose.

Durability approaches under investigation focus on node-
local and compute area solutions. Avoiding the centralized
storage system is a primary goal to ensure performance and
scalability of this system.

The current reliance on timeouts for detecting failures is a
convenience rather than a requirement. Other mechanisms that
are less sensitive to jitter, such as ping messages, may be in-
corporated as the implementation progresses. These techniques
will be selected based on the reliability and performance
implications to the overall protocol.

There are several opportunities to optimize D>T by pig-
gybacking certain messages and providing an optional opti-
mistic and potentially implied success model, thus reducing
the overall volume of messages. Some examples of similar
optimizations were found in Sinfonia, where they introduce
the concept of mini-transactions. One such example found in
this work is piggy-backing the transmission of the data along
with the commit/abort request.
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