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Abstract—Significant challenges exist for achieving
peak or even consistent levels of performance when
using IO systems at scale. They stem from sharing IO
system resources across the processes of single large-
scale applications and/or multiple simultaneous programs
causing internal and external interference, which in turn,
causes substantial reductions in IO performance. This
paper presents interference effects measurements for two
different file systems at multiple supercomputing sites.
These measurements motivate developing a ‘managed’
IO approach using adaptive algorithms varying the IO
system workload based on current levels and use areas.
An implementation of these methods deployed for the
shared, general scratch storage system on Oak Ridge
National Laboratory machines achieves higher overall
performance and less variability in both a typical us-
age environment and with artificially introduced levels
of ‘noise’. The latter serving to clearly delineate and
illustrate potential problems arising from shared system
usage and the advantages derived from actively managing
it.

I. INTRODUCTION

To meet the performance demands of petascale
applications and science, HPC file systems continue
to grow in both extent and capacity. For example,
the new file system at Oak Ridge National Labo-
ratory supporting the petascale Jaguar machine has
672 individual storage targets (OSTs) and over 10
petabytes of storage. Storage targets can be used in
parallel, resulting in a theoretical peak of generally
around 60 GB/sec aggregate performance (as much as
90 GB/sec with optimal network organization) and it
is clear that such performance levels are needed when
up to 225,000 compute cores can concurrently generate
output. Additional performance requirements are due
to file system sharing across multiple machines, as
is the case at both ORNL and NERSC, where IO
systems are used simultaneously by petascale machine
applications that generate output data and by analysis

or visualization codes that consume it.
Extensive prior work is focused on the performance

of shared file systems used by enterprise applications
that generate rich and varying mixes of read/write
accesses to large numbers of files. Topics range from
driver-level work on efficient algorithms for disk ac-
cess to system-level strategies for effective buffering to
alternative file organizations [47] used in file systems
to diverse methods for content distribution across mul-
tiple OSTs and/or machines such as file striping, etc.
The parallel file systems used at ORNL, NERSC, and
other supercomputing sites, in fact, use many of the
sophisticated techniques developed in such research.
In addition, HPC researchers have developed novel
methods in support of high performance IO, which
include data staging [1], [41], the use of alternative
file formats or organizations [8], [34], [29], [30], and
better ways to organize and update file metadata [42],
[16], [20], [57], [31].

Despite their use of state of the art approaches like
those described above, the large parallel file system
installations at sites like ORNL or NERSC continue
to face significant challenges when they are used ‘at
scale’. This is due to several facts. First, in contrast
to most enterprise applications, an HPC application
can demand instantaneous and sole access to a large
fraction of the parallel file system’s resources. An
example is a petascale code that outputs restart data.
If IO resources are insufficient, this code will block
and waste CPU cycles on compute nodes waiting for
output rather than making positive progress for the
ongoing scientific simulation. Such latency sensitive
behavior is characterized by periodic output patterns,
with little or no IO activity for the 15 or 30 minutes of
duration of alternating computation and output steps,
thereby providing distinct deadlines for IO completion.
Second, the resource demands imposed by single large-
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scale codes are magnified by the simultaneous use
of the petascale machine by multiple batch-scheduled
applications, each desiring a substantial portion of IO
system resources and each demanding low latency
service. Third, when file systems are shared, like those
at ORNL and NERSC, it is not just the petascale codes
that demand IO system resources, but there are also
additional requests that stem from the analysis or vi-
sualization codes running on select petascale machine
nodes and/or on attached cluster machines with shared
file system access.

The facts listed above all contribute to an important
phenomenon observed in the IO systems used with
petascale machines, which is that of high levels of
variability in IO performance. Measurable sources of
such variability include the following:

• Internal interference occurs when too many pro-
cesses within a single application attempt to write
to a single storage target at the same time. This
causes write caches to be exceeded leading to the
application blocking until buffers clear.

• External interference can occur even if an appli-
cation takes great pains to properly use storage
resources, since it is caused by ‘shared’ access
to the file system, an example being analysis
codes running on an attached cluster machine that
attempt to read data stored in the shared scratch
space at the same time as the petascale machine is
writing its output data. Another example is simul-
taneous file system use by multiple applications
running simultaneously on the petascale machine.

An additional issue is lack of scalability in metadata
operations, which has been considered in extensive
past research. The LWFS file system, for example, de-
couples metadata from data operations and postpones
them, when possible [42], and the partial serialization
approach described in our own previous work with
Jaguar [35], [32] reduces intra-application sources of
contention experienced by the metadata server.

Prior work in the enterprise domain does not ad-
equately address the internal or external interference
effects observed on petascale machines. This is be-
cause in enterprise systems, the principal concern has
been to properly sequence and batch read vs. write
operations on large numbers of files, in ways that lever-
age processes’ sequential read behavior to reduce disk
head movement, while also effectively using available
buffer space [6], [22]. These solutions may help with
interference effects on single storage targets, but they
do not address the load balancing or uneven usage
across the multiple OSTs seen in HPC storage systems.

We have developed a new set of dynamic and
proactive methods for managing IO interference. These

adaptive IO methods improve IO performance by
dynamically shifting work from heavily used areas of
the storage system (i.e., storage targets – OSTs) to
those that are more lightly loaded. Adaptive IO is
complemented by additional techniques that stagger
file open (i.e., metadata) operations to manage per-
formance impacts on the metadata server. By using
adaptive IO, we have been able to substantially im-
prove the IO performance of petascale codes, including
that of fusion simulations like GTC [24], XGC1 [12],
GTS [56], and Pixie3D [11]. These codes generate
restart and analysis data every 15 or 30 minutes, with
full scale, production data sizes generally between 64
MB and 200 MB per process. For a typical petascale
run of around 150,000 processes, 200 MB per process
yields 3 TB to be written every 30 minutes. Staying
within a generally acceptable 5% of wall clock time
spent in IO limit, this requires a minimum sustained
speed of 35 GB/sec. With the current Lustre limit of a
maximum of 160 storage targets for a single file, and
a per storage target theoretical maximum performance
of around 180 MB/sec, a maximum of only 28 GB/sec
can be achieved in theory, assuming perfectly tuned IO
routines and an otherwise quiet system. Removing this
limit can address internal interference, of course, but
it does not help with external interference in a busy
system. In response, adaptive IO is designed so as
to cope with both internal and external interference
effects, the goal being to consistently achieve > 50%
of theoretical peak IO performance.

Experimental results presented in this paper first
assess and diagnose the presence and effects of internal
and external interference in petascale storage systems.
Based on the insights gained from these evaluations,
adaptive IO methods are implemented in the context
of the ADIOS IO middleware now widely deployed
for petascale codes [28]. The outcome is a substantial
improvement in IO performance, ranging from around
2x the average performance for a 16384 process run
of XGC1 to more than 4.8x for the 16384 process run
of Pixie3D with 16 TB output per IO, all with less
variability in the time spent performing IO.

The remainder of this paper is structured as follows.
Section II experimentally establishes the existence of
both internal and external interference for multiple
large-scale parallel file systems. We then describe the
design, software architecture and implementation de-
tails of adaptive IO in Section III. Section IV presents
experimental evaluations, using both actual petascale
applications and synthetic benchmarks, the latter to
better characterize certain performance properties and
behaviors. Results are discussed in Section IV-C fol-
lowed by an outline of related work in Section V.



Conclusions and future work appear in SectionVI.

II. PROBLEM AND MOTIVATION

Variability in file system performance due to concur-
rent use has existed since multi-user operating systems
were developed, causing parallel file systems to em-
ploy rich caching and other performance management
techniques for their internal storage targets. The inter-
nal and external interference effects seen in parallel
file systems, however, are not adequately addressed
by these techniques, as validated by the performance
measurements taken on multiple machines and file
systems presented below.

The first set of measurements use the petaflop par-
tition of the Jaguar machine at Oak Ridge National
Laboratory. This is a Cray XT5 machine with 18,680
nodes, each with dual, hex-core AMD Opteron proces-
sors (224,160 cores) and with 16 GB of RAM per node.
The scratch file system is a 672 storage target Lustre
1.6 system with 10 PB total storage shared across
multiple machines at ORNL. Second are measurements
on the XTP machine at Sandia National Laboratories,
which is a Cray XT5 with 160 nodes, each with
dual, hex core AMD Opteron processors (1,920 cores)
with a Panasas file system (PanFS) configured with 40
StorageBlades for a total of 61 TB of storage. Third
are results attained on the Franklin Cray XT4 MPP at
NERSC. Franklin has 38,128 Opteron compute cores,
and its scratch file system is Lustre with 96 storage
targets and 436TB storage. Experimental data concern-
ing Jaguar and XTP are collected by the authors of
this paper; performance data on Franklin is obtained
from NERSC’s online performance monitoring data
repository [38].

Measurements reported below first document the
existence of internal interference and its impact on
aggregate write bandwidth. External interference and
its impacts are shown second. The section concludes
with a summary of results and insights. To strictly
isolate interference effects, all reported measurements
specifically omit file open and close times.

1) Internal Interference: Using Jaguar/Lustre and
the IOR benchmark [51], we demonstrate internal
interference by writing data of differing sizes via
different ratios of processes to storage targets (OSTs).
In all such tests, the IOR program is configured to use
512 OSTs, where each process writes data to a separate
file and to some fixed OST using POSIX-IO. Writers
are split evenly across the 512 OSTs.

Figure 1(a) depicts the scaling of IOR POSIX-IO
aggregate write bandwidth on Jaguar with different
numbers of writers and different per-writer data sizes.
Figure 1(b) shows the corresponding average per-
writer bandwidth values at different scales. In both

(a) Scaling of Aggregate Write Bandwidth on Jaguar/Lustre.

(b) Scaling of Per-Writer Write Bandwidth on Jaguar/Lustre.

Fig. 1. Illustration of Internal Interference Effect
figures, each bar represents the average value among
40 samples with error bars depicting maximum and
minimum values. The ratio of processes per storage
target ranges from 1 to 32, and the data sizes range
from 1 MB per process to 1024 MB per process with
weak scaling.

Measurements clearly demonstrate the performance
effects of internal interference. In Figure 1(b), per-
writer write bandwidth consistently decreases with an
increasing number of writers, and Figure 1(a) reveals
that eventually, the increase in aggregate performance
due to an increased total number of writers is dwarfed
by the losses in individual writer performance caused
by contention. This holds for all cases other than those
in which output benefit from the caches associated
with storage targets, i.e., with 1 MB writes. Aggregate
bandwidth peaks with a per-writer data size of 8 MB,
then begins to decrease at the scale of 8192 writers (the
ratio of writer vs. OST being 16:1); for all other data
sizes, aggregate write bandwidth begins to decrease at
the scale of 2048 writers (4 writers per OST). The
effects are amplified at large scales. With per-writer
data size equal or larger than 128MB, the aggregate
write bandwidth degrades by 16%-28% when scaling
from 8912 to 16384 writers. For Sandia’s XTP, we did
not observe substantial bandwidth degradation except
that there is a < 5% reduction in write bandwidth for
the large data sizes (512MB or 1024MB per writer)
when scaling IOR from 512 to 1024 writers. This can
be attributed to the XTP machine’s relatively small
size limiting the contention among concurrent writers
and/or the design of PanFS.

2) External Interference: Tests are run on all three
machines to demonstrate the effects of external inter-



TABLE I
IO PERFORMANCE VARIABILITY DUE TO EXTERNAL INTERFERENCE

Machine Number of Samples Avg. IO Bandwidth (MB/sec) Std. Deviation Covariance
Jaguar 469 1.78e+4 1.07e+4 60.09%

Franklin 2581 6.22e+3 2.50e+3 40.22%
XTP(with Int.) 400 7.89e+2 3.44e+2 43.68%

XTP(without Int.) 320 1.44e+3 1.28e+2 8.86%

(a) Jaguar/Lustre (b) Franklin/Lustre

(c) XTP/PanFS (with Int.) (d) XTP/PanFS (without Int.)
Fig. 2. IO Performance Variability due to External Interference

ference on IO performance. Specifically, hourly IOR
tests are launched where each test is configured with
512 writers using POSIX-IO, one file per writer, and
one process per storage target. Performance results
for these tests have a total of 469 samples of IO
actions. Over the past two years, similar experiments
have been conducted at NERSC on Franklin using
80 writers, with results from those tests accessible
through NERSC’s online performance monitoring data
repository. The experiments we conduct on Sandia’s
Cray XTP differ because XTP is not a production
machine. Here, tests are run in two controlled ways: the
first runs a single IOR program with 512 writers using
POSIX-IO and one file per writer (referred to as “XTP
without Int.”); the second launches two IOR programs
at the same time, thereby emulating the presence of
multiple simultaneous workloads(referred to as “XTP
with Int.”).

Table I summarizes experimental results, and Fig-
ure II-2 shows the histograms of IO bandwidth based
on the performance data collected. It is clear that
in busy production environments like Jaguar and
Franklin, IO variability can be substantial, ranging
from 40%-60%. On Sandia’s Cray XTP, even a moder-
ate degree of sharing (i.e., two simultaneous IOR jobs)
can cause IO performance variations of up to 43%.

To better characterize the extent of interference, we
define the imbalance factor of each IO action to be
the ratio of the slowest vs. fastest write times across
all writers. Consider two separate samples from the

(a) Test 1

(b) Test 2
Fig. 3. Illustration of Imbalanced Concurrent Writers

external interference tests for 128 MB per process on
Jaguar. Figures 3(a) and 3(b) show the individual write
times for each process for these two tests, respectively.
Test 2 took place only 3 minutes later than Test 1.
Apparent from these tests is the dynamic and poten-
tially transient nature of external interference, resulting
in write times that are much more evenly distributed
among all concurrent writers in Test 2 than those in
Test 1. In Test 1, an imbalance factor of 3.44 separates
the minimum and maximum time spent performing IO.
For Test 2, this factor is reduced to 1.86. Interestingly,
even for the latter relatively smaller imbalance factor,
nearly twice as much data could be written to the faster
storage target than to the slower one.

To summarize, we observe a significant imbalance
in terms of fastest vs. slowest writes in all IO tests run
in our experiments with an overall average imbalance
factor of 7.12. Since overall write time is determined
by the slowest writer, the purpose of the adaptive IO
methods presented in this paper, then, is to mitigate
the performance impact of these ‘slow’ writers.

3) Alternatives to Adaptive IO: One possible way
to reduce the effects on applications of IO performance
variability is to decouple IO from application actions
through the use of asynchronous IO. Unfortunately,
given the large volumes of output generated by typical
petascale applications, asynchronicity is limited by the
total and limited amounts of buffer space available on
the machine, which typically extends to only one or
at most a few simulation output steps. Such ‘near-
synchronous’ IO, therefore, still causes applications
to block on IO when IO performance is consistently
too low. Unfortunately and as evident from the experi-



mental evidence presented above, consistently low per-
formance is a natural outcome of internal or external
interference.

Data staging [1], a second potential solution to IO
performance variability, also has limited applicability.
To explain, data staging moves output from a large
number of compute nodes to a smaller number of stag-
ing nodes before writing it to disk. However, the total
buffer space available in the staging area is limited,
thereby limiting the achievable degree of asynchronic-
ity. Further, large staging areas and/or multiple staging
areas concurrently used by multiple applications will
still lead to internal or external interference. Data
staging, therefore, can help with interference issues,
but does not directly address them. In fact, our ongoing
work is integrating adaptive IO even into the data
staging software we are deploying on Jaguar.

Another approach to reducing internal interference
is to split output into a collection of files to ‘match’ the
parallel file system being used. In the case of Jaguar
and its Lustre FS, for instance, splitting output into 5
parts would enable an application to take full advantage
of the entire file system’s resources, thereby providing
at least a reasonable guarantee of achieving required
performance during some normal, productive, busy
time. This helps alleviate internal interference, but does
not solve it nor does it address external interference.

In summary, the use of asynchronous IO, data
staging, and/or target-specific mitigation methods may
reduce the effects of IO performance variability on
applications, but does not address its root problems.
Because of these facts and the substantial performance
variability in the storage system, adaptive IO contin-
uously observes the storage system’s performance to
configure output in a way that transparently ‘best’
matches its static and dynamic characteristics.

4) Summary and Discussion: Experimental results
shown in this section demonstrate the existence of
internal and external interference on three different
machines and with two different file systems. Interfer-
ence (1) negatively impacts the scaling of IO perfor-
mance, and perhaps more importantly, (2) introduces
substantial IO performance variations that make it
difficult to accurately predict and then properly allocate
the amounts of time needed for performing IO. IO
performance variations are shown to be the common
rather than the uncommon case, particularly in pro-
duction environments. This holds both the for POSIX-
IO measurements reported above and for tests that use
MPI-IO (not reported, for brevity), where for all cases,
MPI-IO results show the same trends, but with inferior
performance. We conclude, therefore, that internal and
external interference are inherent and performance-

limiting properties of petascale file systems.

III. SOFTWARE ARCHITECTURE AND
IMPLEMENTATION OF ADAPTIVE IO

Adaptive IO is implemented in the context of the
ADIOS IO middleware [33], [28]. Specifically, adap-
tive IO is realized as an optional set of techniques
bundled into a new IO method.

A. MPI-IO

The MPI-IO transport method was developed as one
of the first options offered by ADIOS. Its common
use has resulted in several optimizations, leading to
excellent peak IO performance seen on Jaguar and
its Lustre file system [35]. Substantial performance
advantages are derived from limited asynchronicity,
by buffering all output data on compute nodes before
writing it (if possible). Additional optimizations in
certain variants of the base ADIOS transport are tied
to the Lustre file system used by many HPC codes.
As a result, ADIOS and its MPI-IO base transport
constitutes a high performance, well-tuned set of IO
abstractions against which adaptive IO can be tested
and evaluated.

B. Adaptive IO

Fig. 4. Adaptive IO Organization

Figure 4 depicts a sample configuration. When using
the adaptive IO method, middleware enhances the
output actions taken by these processes in ways that
ascribe to them three different roles, as illustrated in the
figure: (1) the numbered circles represent process IDs
of writers participating in the output, (2) some of these
processes carry out additional actions, acting as sub-
coordinators (SC) for a set of writers and a storage tar-
get, represented by the vertical boxes in the figure, and
(3) one process plays the distinct coordinator (C) role
for the entire set of writers. The coordinator and writers
only communicate with the sub coordinators, never
directly with each other. This isolates the messaging
reducing the message load on any particular part of the
system. We note that different sub coordinators write
to different files, since this is how we can control map-
pings to certain storage targets. We purposely enhance
writers with roles rather than implementing coordina-
tors and sub-coordinators separately from writers. This
avoids using additional processes and having to tightly



synchronize their coordination actions with the writing
actions of separated writer processes. Since process
IDs are typically assigned sequentially to cores in a
node, grouping them as illustrated reduces the network
contention on the node due to simultaneous writing
from the same node, but different cores. Finally, by
placing the coordination/sub coordination roles into
the first process in each group, they can each focus
on management after completing their writes instead
of possibly being reassigned adaptively to a different
target (file). This choice also avoids any delays in
messaging due to the writer role for the process being
busy while the coordinator is attempting to start an
adaptive writer for this group.

The software architecture chosen for adaptive IO
scales to the numbers of writers present in petascale
machines like Jaguar and beyond. Specifically, based
on the current state of the XT5 partition of Jaguar
with approximately 225,000 processing cores and with
the current 672 storage targets in the attached Lustre
scratch system, this means each sub-coordinator is re-
sponsible for, at most, 335 processes. The coordinator
is only responsible for the sub-coordinators, giving it
672 processes to manage. Even at the extreme scale
of the Jaguar machine, these numbers are manage-
able and leave room for growth. An additional layer
of coordination or distributed or partial coordination
would further improve scalability, at the costs of ad-
ditional messaging and thus, coordination overheads.
Some insights on these tradeoffs are present in prior
work on larger-scale management architectures for the
enterprise domain [26], [27].

We next explain in more detail the precise actions
taken by processes in different roles.

1) Writers: The details of this role are described
in Algorithm 1. To ensure a consistent flow of data
to storage, file indexing information is transferred
separately and after writing is complete, so that this ad-
ditional metadata transfer can take place concurrently
with another process writing to storage.

Algorithm 1 Writer Process
1: Wait for message (target, offset)
2: Build local index based on offset
3: Write data
4: Send WRITE COMPLETE to triggering SC
5: if triggering SC 6= target SC then
6: Send WRITE COMPLETE to target SC
7: end if
8: Send local index to target SC

2) Sub-Coordinator (SC): Communications be-
tween the sub-coordinator(s) and coordinator constitute

the major elements of the adaptive IO implementation.
The details are described in Algorithm 2.

Algorithm 2 Sub-Coordinator Process (SC)
while not done and missing indices 6= 0 do

2: Signal next waiting writer to write
Wait for message

4: if message = WRITE COMPLETE then
if source is one of mine, but target is not me
then

6: Send adaptive WRITE COMPLETE to C
end if

8: if source is one of mine and target is me then
Save index size for index message

10: missing indices++
end if

12: if all writers completed then
Send WRITE COMPLETE to C

14: end if
end if

16: if message = INDEX BODY then
Save for index for local file

18: missing indices–
end if

20: if message = ADAPTIVE WRITE START
then

if no waiting writers then
22: Send WRITERS BUSY to C

else
24: Signal writer with new target and offset

end if
26: end if

if message = OVERALL WRITE COMPLETE
then

28: done = true
end if

30: end while
Sort and merge the index pieces for file index

32: Write the index
Send the index to C

3) Coordinator (C): The coordinator role is gen-
erally idle until the late stages of IO when sub co-
ordinators message their completion. As completions
arrive, the coordinator begins to obtain a global view
of the relative performance of storage targets. Given
this view, it then attempts to shift work from busy (i.e.,
slower) to less loaded (i.e., faster) storage targets. This
continues until all work has been completed, at which
point it signals the completion of the composite write
operation so that the local indices can be created and a
global, master index formed. Adaptive writing requests
are spread evenly among the sub coordinators to spread



out the accelerated completion of the write rather than
pushing sub coordinators to completion one at a time.
The sub coordinators are tracked as either writing, the
initial state for the output operation, busy, indicating all
processes have been scheduled so no adaptive writes
are possible, or complete indicating that all writers
have completed and this file is available for adaptive
writing use. The details are described in Algorithm 3.

Algorithm 3 Coordinator Process (C)
while any SC state 6= complete or adaptive write
request outstanding do

Wait for message
3: if message = WRITE COMPLETE then

if this was an adaptive write then
Request adaptive write by next writing SC

6: end if
if this is an SC completing then

Set SC state to complete
9: Note final offset

Request adaptive write by next writing SC
end if

12: end if
if message = WRITERS BUSY then

Set SC state to busy
15: Request adaptive write by next writing SC

end if
end while

18: Send OVERALL WRITE COMPLETE to all SC
Gather index pieces
Merge into global index with local file information

21: Write global index file

This adaptive mechanism scales according to the
number of storage targets rather than the number of
writers. The coordinator is only involved in the process
once the bulk of writers are complete. Then, the largest
number of simultaneous adaptive requests is strictly
limited to SCcount − 1 as at most one write will be
active for any file at one time. A larger pool of writers
will only serve to keep the distributed, independent
sub coordinators busy longer without affecting the
coordinator with any additional simultaneous work.
Adaptive IO has been fully implemented and tested,
with the exception of the global indexing phase. In the
interim, we use a automatic, systematic search of the
index in each file for particular data of interest. The
inclusion of the data characteristics [35] aid this search
by enabling quickly searching for both the content as
well as the logical ‘location’ of the data of interest.
Also note that the Adaptive IO configuration shown in
this section can be generalized, at the consequent cost

of additional code complexity. For instance, one might
use 2 or 3 simultaneous writers per storage location
and/or multiple storage locations per sub coordinator.
We have not experimented with these generalizations.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of adaptive IO, all tests
are performed on the XT5 partition of the Jaguar
system at Oak Ridge National Laboratory (see Sec-
tion II for detailed machine configuration). Tests aim
to understand how different per process sizes of data
perform with adaptive vs. non-adaptive IO, using two
production petascale codes: (1) an IO kernel for the
Pixie3D MHD simulation is run at 3 different per
process data sizes; (2) the full XGC1 fusion code is run
using a single per process data size. The ADIOS [33]
layer is used to switch between the MPI-IO and the
adaptive transport methods described in Section III.

The four output size sets of tests demonstrate the
performance ranging from 2 MB/process up to 1024
MB/process. Tests are run with different process counts
from 512 to 16384 processes against 160 OSTs for
MPI, the maximum allowed for 1 file, or 512 OSTs for
adaptive. The 512 OST selection for adaptive is chosen
to simplify the discussion of ratios of writers to storage
targets. The adaptive approach has been successfully
tested with 672 storage targets with no penalties
compared with the 512 storage targets measurements
presented here. The tests are first run under normal
system conditions with whatever other simultaneous
jobs happen to be running. A second set of runs are
performed with artificial interference introduced in an
attempt to show the performance under a more heavily
loaded file system. These results are then analyzed to
show the performance of the different IO approaches.
To ensure accurate measurements, an explicit ‘flush’
is introduced prior to the file close operation for both
the MPI and the Adaptive transport methods. For all
cases, at least five samples are generated and included.
Where possible, additional samples are included as
well to strengthen the numbers. In all cases, the times
reported only include the actual write, flush, and file
close operations to remove the variability due to the
metadata server.

External interference is introduced through a sepa-
rate program that continuously writes to a file striped
across 8 storage targets during the runtime of the
interference test cases. A stripe count of 8 is selected
to reflect two applications writing using the default
stripe count of 4 configured for the file system. Three
processes each write 1 GB continuously to a single
storage target, for a total of 24 processes.



(a) Small Data (2 MB/process) (b) Large Data (128 MB/process) (c) Extra Large Data (1024 MB/process)

Fig. 5. Pixie3D IO Performance

A. Pixie3D

Pixie3D [11] is a 3-Dimensional extended MHD
(Magneto Hydro-Dynamics) code that solves the ex-
tended MHD equations in 3D arbitrary geometries us-
ing fully implicit Newton-Krylov algorithms. Pixie3D
employs multigrid methods in computation and adopts
a 3D domain decomposition. The output data of
Pixie3D consists of eight double-precision, 3D arrays.
The tested configuration consists of three different
sized runs, named small, large, and extra large. The
small run uses 32-cubes, large uses 128-cubes, while
extra large uses 256-cubes. These cubes represent the
per process, per variable size of the data. Overall, the
small run generates 2 MB/process, large generates 128
MB/process, and extra large generates 1 GB/process.
Weak scaling is employed.

The first set, shown in Figure 5(a), use the small data
model for Pixie3D. With this model, the 2 MB/process,
even at the 16384 process level, never comes close to
the 2 GB cache size for the storage target (32 × 2 MB).
Given that, in general, the adaptive approach does well.
For example, at both 8192 and 16384 processes, the
adaptive approach is 10% better on average for base
performance. For the interference tests, 8192 processes
for adaptive is 3% better on average while the 16384
processes test came to about 35% better. This small
data model is maybe 10% of a typical data size for an
application like the S3D [13] combustion simulation
or the Chimera [36] astrophysics code. Interestingly,
although these data volumes are small, as process
counts increase, the adaptive approach can still pay
off.

The second set, shown in Figure 5(b), use the large
data model. This model consists of 128 MB/process
and it quickly overcomes any caching advantage the
storage targets may provide. It has consistently better
performance both on average and at a maximum. The
improvements range from 1% to more than 350% for
the base case and 62% to more than 430% for the
interference case. This 128 MB/process data size is
comparable to what many of the fusion codes generate

on a per process basis, such as GTC [24]. Another
way to look at this data is considering a hybrid
MPI/OpenMP setup. In this case, we divide the 128
MB by the number of OpenMP threads to find out
what the per process data size would be. For Jaguar’s
12 cores per node, this yields approximately 10 MB,
or about the size of smaller S3D and Chimera runs.

The last set, shown in Figure 5(c), use the ex-
tra large data model. Although there are 3.2x more
storage targets used for the adaptive approach, it is
about 4.8x faster than the non-adaptive one! Once the
adaptation can play a role, i.e., there are a few more
processes than storage targets, there is a consistently
> 300% performance improvement for both the base
and interference tests. We note, however, that this data
model is large even by fusion simulation standards,
but we use it because of the growth in per node core
counts on future platforms, likely resulting in hybrid
MPI/OpenMP codes with larger per-node output.

B. XGC1

The XGC1 [12] code is a fusion gyrokinetic Particle
In Cell code that uses realistic geometry to understand
the physics on the edge of the plasma in a fusion
reactor, such as ITER. These tests are performed using
a configuration that generates 38 MB per process and
weak scaling is used. While 38 MB per process is
smaller than the largest runs for XGC1, it is still a
representative size for a production run.

The performance of XGC1, shown in Figure 6, falls
between that of the Pixie3D small and large data mod-
els, as would be expected. In this case, 38 MB/process
is not uncommon for many scientific codes beyond
XGC1, such as larger S3D runs. Adaptive IO shows
clear advantages. For example for all of the tests, the
performance improvement ranges from 30% to greater
than 224%.

C. Additional Insights and Discussion

Adaptive IO benefits from ‘locality-awareness’, re-
ferring to the fact that when outputs are written, there
are less vs. more ‘busy’ areas of the file system, due



Fig. 6. XGC1 IO Performance (38 MB/process)

(a) Pixie3D Small (b) Pixie3D Large

(c) Pixie3D Extra Large (d) XGC1

Fig. 7. Standard Deviation of Write Time

to external and/or internal interference. Measurements
and evaluations appearing in this paper substantiate
that fact, and they also refine our earlier reports in
which we note variability in IO performance [32]. We
further substantiate these statements by next showing
that adaptive IO typically reduces the IO performance
variability experienced by applications.

For both Pixie3D and XGC1, once the process count
reaches some small multiple of the storage target count,
e.g., 4, the adaptive approach offers higher and more
consistent performance. The graphs in Figure 7 show
the standard deviation of the write times for each of
the 4 cases measured. Here, the absolute numbers are
less important than the fact that for all cases, once
the caches on the storage targets start to be taxed,
adaptive IO reduces variability. In some cases, such
as in Figure 7(c), the difference is quite large.

Adaptive IO manages these variations by taking
advantage of the imbalance factor noted in Section II
to dynamically shift work from slower areas of the
file system to faster ones. A potential issue with using
adaptive IO, however, is that it requires additional files
for output. Specifically, the number of output files is a
function of the file system size rather than the process

count in the run. By using the global index, access
to any data can be performed using a single lookup
into the index and then a direct read of the value(s)
from the appropriate data file(s), sometimes resulting
in improved performance [45] compared to the use of
single storage formats. Considering that output sets are
generally treated as a unit and that the number of files
is a function of the number of storage targets rather
than the number of processes, we believe the use of
additional files does not strongly impact the ability of
the scientist to manage the generated data.

V. RELATED WORK

Parallel file systems offer high levels of perfor-
mance for HPC applications, including Panasas [44],
PVFS [48], Lustre [10], and GPFS [49], all of which
provide POSIX-compliant interfaces. As stated earlier,
there remain certain performance challenges, however.
These systems aim to provide general purpose, multi-
user file services, which as a goal, is somewhat orthog-
onal with a single user’s desire to receive substantial
IO resources and then, to optimize how these resources
are used on behalf of that user. Adaptive IO provides
such complementary functionality.

Current work on log-based file systems [46], [8] has
improved write performance for checkpoints, but at the
potential cost of reduced read performance. PLFS [45]
has demonstrated that read performance does not suffer
when performing a restart-style read of all of the data,
but interference effects have not yet been addressed.

LWFS [42] breaks POSIX requirements in order
to better suit client needs, but does not address the
internal nor external sources of interference created by
the shared file system. The Google File System [17]
is focused on high aggregate throughput, but is not
concerned with maximizing per client performance.
Closer to our work is that of Gulati and Varman [18],
who provide for scheduling IO operations, but their
focus is on using caches to improve read performance,
and they do not address the cases where the data is far
larger than total cache space.

Using middleware to manage IO to improve per-
formance is not new to HPC. MPI-IO introduced the
ADIO layer [21] as a way to install system-specific
optimizations of the general MPI-IO implementation.
Many optimizations are possible and have been han-
dled at this layer, such as custom drivers for Lustre or
PVFS. Collective IO, also handled in this middleware
layer, attempts to perform a level of data-size driven
adaption by aggregating small writes into single, larger
writes to obtain greater performance, but it does not
address the issue of large writes from all of the
processes, nor does it address interference problems.



At the slightly higher layer of IO APIs, the issue
has largely been sidestepped. Both HDF-5 [19], and
therefore NetCDF4 [54], and PnetCDF [39] have ceded
control of this detail to the underlying IO layer, typi-
cally using MPI-IO. Some work has been done by the
PnetCDF team on ‘subfiling’ [14] to try to address
the need to decompose the output to gain greater
parallelism. They also did not address the transient
performance issues of external interference.

Data staging efforts have primarily focused on re-
ducing data read times in HPC [37], in grid envi-
ronments [15], [43], and for mobile applications [50].
More recent work has used data staging for enhancing
write performance [40], but at a cost of additional
compute resources. Demonstrated on a BlueGene/P
with dedicated IO forwarding nodes, the IO Forward-
ing Scalability Layer [4] aggregates requests to reduce
contention on the IO system to manage internal inter-
ference for writing but does nothing to manage external
interference effects. To soften the cost of the additional
resources for data staging, DataTap [3] provides data
staging-like functionality, but provides much more
significant in transit data processing features. DataTap
has worked extensively to manage the IO effectively
using several scheduling techniques [2].

Some results for the ADIOS stagger IO approach
were reported at the 2009 Cray User’s Group [32].
Stagger addressed internal interference and exposed
the magnitude of the transient external interference.
Since these results were presented, the number of
cores was increased by 50% and the connection to
the file system was adjusted because it is now being
shared as the primary scratch space across most HPC
resources at ORNL. These changes in system configu-
ration make managing IO performance vairability even
more challenging and motivate us to explore adaptive
IO mechanism in this paper.

Adaptive approaches have been applied to IO sys-
tems in the past. Shared use of enterprise shared
storage systems is considered in [55]. The goal is
to maintain some level of quality of service for all
competing applications, but there is no consideration
of balanced IO loads for single applications across
multiple storage targets. More recent work investigates
pre-fetching and job scheduling [53], integrated with
the job scheduler for an HPC resource. The goal is
to reduce application load and start up times by pre-
staging input data for read-intensive workloads. Also
related to our work is the OPAL ADIO library [58] for
MPI-IO. It attempts to manage IO based on the disk
system itself, but it does not dynamically adjust where
data is written. CA-NFS [7] pursues goals similar to
ours, but it does not actively manage different storage

areas, relies on asynchronous IO, and is limited to the
mechanisms of NFS. Most closely related to our work
is [52], which dynamically changes disk striping based
on data sizes and on information about past usage.
Its focus on repeat IO events means that it does not
dynamically adjust file system usage across a single
large output file, as done in our work.

Observations about the performance variability of
shared HPC storage systems appear in [5], where
NERSC researchers report that a small number of
slow storage targets greatly increased total IO time.
System logs and dedicated benchmarks [25] have been
used to identify a variety of performance variations
in HPC environment. Black box approaches [23] have
been used to identify sources of performance problems
related to storage or the network. Network sources for
contention [9] have also been documented. Our obser-
vations about IO performance variability comply with
these work, and our work explores active management
to better handle IO performance variability.

VI. CONCLUSIONS AND FUTURE WORK

Interference effects cause variable IO performance
on both the shared file systems present at NERSC
and ORNL, but also on machines with non-shared file
systems, like Sandia’s XTP. The adaptive IO methods
presented in this paper mitigate such variability by
continuously observing the storage system’s perfor-
mance and then balancing the workload being imposed.
This substantially improves the IO performance seen
by petascale codes, as demonstrated with numerous
measurements and on multiple machines.

Our future work will examine the benefits of adap-
tive IO on systems beyond Lustre at ORNL, including
Franklin at NERSC, PanFS on Sandia’s XTP, and
perhaps, GPFS on a BlueGene/P machine. Also of
interest are other sources of variability, including that
of metadata operations like file opens. Finally, there
are likely more complex and/or state-rich methods
for system adaptation, including those that take into
account past usage data.
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