PreDatA — Preparatory Data Analytics on Peta-Scale Machines

Fang Zheng*, Hasan Abbasi*, Ciprian Docan', Jay Lofstead*, Qing Liu¥, Scott Klasky*
Manish ParasharT, Norbert Podhorszkii, Karsten Schwan* and Matthew Wolf*¥
*College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
fCenter for Autonomic Computing, Rutgers University, Piscataway, NJ 08854
t0ak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract—Peta-scale scientific applications running on High
End Computing (HEC) platforms can generate large volumes
of data. For high performance storage and in order to be
useful to science end users, such data must be organized in
its layout, indexed, sorted, and otherwise manipulated for sub-
sequent data presentation, visualization, and detailed analysis.
In addition, scientists desire to gain insights into selected data
characteristics ‘hidden’ or ‘latent’ in these massive datasets
while data is being produced by simulations. PreDatA, short for
Preparatory Data Analytics, is an approach to preparing and
characterizing data while it is being produced by the large scale
simulations running on peta-scale machines. By dedicating
additional compute nodes on the machine as ‘staging’ nodes
and by staging simulations’ output data through these nodes,
PreDatA can exploit their computational power to perform
select data manipulations with lower latency than attainable
by first moving data into file systems and storage. Such in-
transit manipulations are supported by the PreDatA middle-
ware through asynchronous data movement to reduce write
latency, application-specific operations on streaming data that
are able to discover latent data characteristics, and appropriate
data reorganization and metadata annotation to speed up
subsequent data access. PreDatA enhances the scalability and
flexibility of the current I/O stack on HEC platforms and
is useful for data pre-processing, runtime data analysis and
inspection, as well as for data exchange between concurrently
running simulations.

I. INTRODUCTION

Scientific applications running on High End Computing
(HEC) platforms can generate large volumes of output.
As these grow to peta-scale and beyond, fast write and
read accesses to massive data are becoming increasingly
important, both to speed up the simulation and to accelerate
exploration of data. A prerequisite to data exploration is
that data is prepared in terms of data layout, indexing, and
annotation. For example, some analysis tools prefer data to
be laid out as contiguous arrays for quick loading [49], and
queries can be accelerated if data is properly sorted and
indexed [42]. In other words, appropriate data preparation
is critical for data analytics, inspection, or visualization
to operate efficiently. Finally, ‘hidden’ in the voluminous
data sets generated by running simulations are latent data
characteristics of interest to end users, an example being
statistical measures that can be used to validate the veracity
of the ongoing simulation, gain understanding of the simu-
lation progress, and potentially, take early action when the

simulation operates improperly [20].

The object of our research and topic of this paper is the
development of efficient methods that properly prepare data
for subsequent inspection, storage, analytics, and even for
input into concurrent, coupled simulation models (e.g., as
in climate modeling). Our approach associates such data
preparation with the output actions taken by simulations in
ways that speed up output actions, thereby also improving
simulation performance. The software artifact developed
and used for these purposes is the PreDatA middleware.
PreDatA provides scalable and flexible ways of associating
data preparation operations with the I/O actions of HEC
applications, by generalizing the I/O stack used by HEC
codes and taking advantage of the ADIOS /O library [29]
used in a wide variety of peta-scale codes. The enhanced
I/O stack enables efficient operations on output data via
predefined or user-provided computational functions. These
functions are performed while I/O is ongoing by staging data
to where PreDatA can leverage the computational power of
selected machine nodes supporting I/O and/or connected to
the storage subsystems. Further, by using PreDatA to index
or properly annotate data, a reduction in the volume of sub-
sequent reads performed by scientific workflows engaged in
data analysis can be achieved. This also reduces interference
at the parallel file system due to simultaneous writes used
by output and reads used by scientific workflows.

The PreDatA middleware exploits the additional compu-
tational and memory resources provided by a staging area
resident on the peta-scale machine. Output data are moved
from compute to staging area nodes asynchronously to
reduce write latency. PreDatA operations are applied to data
prior to leaving the compute node and/or on data buffered
in the staging area. The middleware provides a pluggable
framework for executing user-defined operations such as
data re-organization, real-time data characterization, filtering
and reduction, and select analysis (or pre-analysis). These
operations are specified in ways natural to the ‘streaming’
context in which they are used. Despite this rich function-
ality, PreDatA offers levels of performance not provided
by current file system-based approaches to analyzing output
data, as shown with extensive experiments in this paper.

PreDatA performance is evaluated with several production
peta-scale applications on Oak Ridge National Laboratory’s

Leadership Computing Facility platform. For one applica-
tion, GTC [23], at the scale of 16,384 compute cores and
with 1.5% additional resource usage, PreDatA hides write
latency by up to 99.9%, improves total simulation time by
2.7%, and achieves a 1.5% saving in total CPU usage com-
pared with performing pre-analytics in the compute nodes. In
this experiment, PreDatA generates scientifically meaningful
statistics from the 260GB output data in one simulation
time step in about 40 seconds. For another application,
Pixie3D [10], using PreDatA to re-organize the array layout
of output data from 16,384 cores improves subsequent read
performance for these output files by 10 times compared
to when no such reorganization is performed. At the same
time, total execution time of the simulation is improved by
1% with only 0.7% additional resource usage.

The remainder of the paper is organized as follows.
Section II introduces the data management challenges for
two motivating applications. Sections III and IV present the
design and implementation of PreDatA, respectively. Sec-
tion V applies the PreDatA approach to the two applications,
and evaluates the resulting performance demonstrating its
advantage over other online and/or offline approaches. Sec-
tion VI summarizes related work, and Section VII concludes
the paper.

II. APPLICATION DRIVERS

The development of PreDatA has been driven by the out-
put and analysis needs of two production peta-scale codes,
GTC and Pixie3D, both of which are capable of scaling to
tens of thousands of cores and generating Terabytes of data
in typical production runs.

A. The GTC Fusion Modeling Code

The Gyrokinetic Toroidal Code (GTC) [23] is a 3-
Dimensional Particle-In-Cell code used to study micro-
turbulence in magnetic confinement fusion from first princi-
ples plasma theory. It outputs particle data that includes two
2D arrays for electrons and ions, respectively. Each row of
the 2D array records eight attributes of a particle including
coordinates, velocities, weight, and particle label. The last
two attributes, process rank and particle local ID within
the process, jointly form the label that globally identifies a
particle. They are determined on each particle at the start of
a simulation and remain unchanged throughout the particle’s
lifetime. These two arrays are distributed among all cores,
and particles move across cores in a random manner as
the simulation evolves, resulting in two out-of-order particle
arrays. In a production run at the scale of 16,384 cores,
each core can output two million particles roughly every
120 seconds resulting in 260GB of particle data per output.

As shown in Fig. 1, three analysis and preparation tasks
are performed on particle data. The first involves tracking
across multiple iterations of a million-particle subset out
of the billions of particles, requiring searching among the

sorted array BRle

. BP writer |
o)

1' Bitmap
Particle array i _Indexing J|
4.[Hi: }W’[Plotter E—‘ k‘ u

Index file

Figure 1. Illustration of PreDatA Operations on GTC Particle Data

Output Data

Diagnostics

Particle Diag.]U [Toroidal flux Diag. J'

Momentum Diag. Jn Velocity divergence Diag. J'

Growth rate Diag.]]

(
Energy Diag. Tﬂ [
(

Current Diag. m Maximum velocity Diag.]‘ Visualization by Vislt

B?file l'] W

Tlustration of PreDatA Operations on Pixie3D Output Data

[
r
k
t

BP writer

Layout Re-organization }%—-[

Figure 2.

hundreds of 260GB output files by the particle label. To
expedite this operation, particles can be (and for our example
are) sorted by their labels before searching. The second
task performs a range query to discover the particles whose
coordinates fall into certain ranges. A bitmap indexing
technique [42] is used to avoid scanning the whole particle
array, and multiple array chunks are merged to speed up bulk
loading. The third task is to generate 1D histograms and 2D
histograms on attributes of particles [21] to enable online
monitoring of the running GTC simulation. 2D histograms
can also be used for visualizing parallel coordinates [21] in
subsequent data analysis.

B. The Pixie3D Code

Pixie3D [10] is a 3-Dimensional MHD (Magneto Hydro-
Dynamics) code that solves the extended MHD equations in
3D arbitrary geometries using fully implicit Newton-Krylov
algorithms. Pixie3D employs multigrid methods in compu-
tation and adopts a 3D domain decomposition. The output
data consists of eight 3D arrays that represent mass density,
linear momentum components, vector potential components,
and temperature, respectively.

As illustrated in Fig. 2, various diagnostic routines are per-
formed on Pixie3D output data to generate derived quantities
such as energy, flux, divergence, and maximum velocity.
These derived quantities, along with the raw output data,
are then read by visualization tools like Vislt for interactive
visual data exploration. Pixie3D employs the BP file format
for fast write performance [29]. Array layout re-organization
is performed to speed up subsequent read access.

C. Using the Staging Area for Flexible Scalable I/O and
Pre-Data Analytics

Conventionally, data preparation and analytics are per-
formed either in compute nodes where the simulation is
running or offline:

In-Compute-Node approach: operations are performed in
the compute nodes where output data is generated. The
processed output is then written to the parallel file system.

Offline approach: the simulation dumps data to a parallel
file system. Analysis codes running on other resources read
such data and operate on it.

These two approaches to processing simulation output
data differ in terms of their respective costs and limitations.
For the In-Compute-Node approach, the overhead of data
processing operations is visible to the simulation. This
has consequent expenses in terms of CPU hours at scale
and may require additional application tuning. Performance
advantages result if In-Compute-Node actions reduce output
volumes, but severe performance penalties arise if data
processing operations do not scale with the simulation. For
the Offline approach, if the data volume is large, intermediate
files may consume considerable storage resources, and paral-
lel file system write and read times can be dominant causing
high latencies and unacceptable levels of perturbation of
peak file system performance. These arguments motivate
the need for additional methods to satisfy the I/O and
data processing needs of these two representative peta-scale
codes.

The Staging Area approach to satisfying peta-scale 1/O
needs uses a reasonable number of compute nodes as a
‘Staging Area’ for staging data and to host operations
that are applied to staged data before it reaches storage.
Asynchronous execution within the Staging Area hides its
processing costs from the simulation, and it also permits
users to use less scalable analysis codes ‘at scale’, the latter
due to the fact that the Staging Area is small in comparison
to the number of compute nodes used for simulation (e.g.,
using a ratio of 128:1 for compute vs. stagings cores).
Staging Area codes can also reduce disk accesses by pre-
processing data so that later analytics can focus on the data
that is most relevant. Finally, since the staging nodes are
tightly coupled with compute nodes, data movements to
staging can be done efficiently [2]. The PreDatA middleware
presented in this paper exploits these facts by running in a
Staging Area on peta-scale machines.

III. PREDATA MIDDLEWARE DESIGN

The PreDatA middleware design augments the current
I/O stack on HEC platforms with data staging and in-
transit processing capabilities. As shown in Fig. 3, Pre-
DatA middleware resides on both staging nodes and the
compute nodes on which the application runs. When the
application performs I/O actions, PreDatA acquires output
data through the ADIOS I/O interface [28], stages data from
compute nodes to staging nodes and performs in-transit data
processing along the data flow. Its current implementation
exploits the computational resources of compute nodes for
data selection and movement and those of the Staging Area
for preparatory data analytics.

Compute nhode Staging node

Application [Data Operation] [High—level Data Service]

High-level Abstraction ‘

Data Operation ‘ Buffer Management‘ ‘ Stream Processing ‘

Data Extraction

[)
‘ ADIOS ‘ ‘
[)
| |

‘ Data Movement H Data Shuffling ‘

Figure 3. PreDatA Middleware Architecture

There are several key features of PreDatA:

Asynchronous data movement. Data movement from com-
pute to staging nodes is performed asynchronously to hide
write latency from the simulation, at moderate consequent
costs for data buffering on compute nodes. PreDatA ex-
plicitly schedules asynchronous data movement to minimize
interference with the simulation’s communications.

Pluggable pre-data analytics. PreDatA provides a plug-
gable framework, making it straightforward for end users to
specify, deploy, and debug data processing operations. The
programming interface is general enough to implement a va-
riety of operations, including data re-organization, real-time
data characterization, filtering and reduction, and lightweight
data analysis.

User-defined operations. The middleware supports user-
defined data operations by providing basic services for data
access, buffer management, scheduling and executing data
processing actions, and for high performance data exchange
and synchronization across staging nodes.

Higher-level services. The middleware also offers select
higher-level data services, such as those for data indexing
and for the data queries needed for inter-application data
exchanges.

IV. PREDATA MIDDLEWARE IMPLEMENTATION

The PreDatA middleware’s implementation leverages our
earlier work [2] on efficiently scheduling data movement
from compute nodes to the Staging Area. The EVPath [17]
high performance event system is used for efficient data
buffering and manipulation in the Staging Area. The
FFS [18] binary data encoding facility is used for in-transit
data to provide PreDatA operations access to buffered data
with rich meta-data information.

A. Data Extraction and Movement

PreDatA uses the ADIOS I/O library [28] for integration
with the HEC I/O stack and in addition, for PreDatA
operations to access the data output by simulations. With
ADIOS, PreDatA processing can be added without requiring
changes to application codes, thereby insulating application
code from the complexities of additional processing actions
in the I/0O stack. ADIOS also explicitly defines the structure
of the application’s output data, and such meta-data is
used as a common interface for application and PreDatA
operations to coordinate sharing data.

Data is extracted from compute nodes and moved to the
Staging Area via the scheduled, asynchronous RDMA [7]
operations. As explained in [2], using asynchronous RDMA
reduces the write latency visible at compute nodes. Carefully
scheduling such RDMA operations eliminates the poten-
tial interference between communications performed by the
simulation vs. those used for output. This is particularly
important when output data movement overlaps collective
communications among compute nodes and thereby may
cause severe perturbation on simulation performance.

B. In-transit Data Processing along the Data Flow

PreDatA augmentation of the I/O stack results in the
overall data flow shown in Fig. 4. There are four stages in the
data flow: (1) data extraction and optional local processing in
compute nodes, (2) optional aggregation in staging nodes,
(3) asynchronous data movement from compute nodes to
staging nodes, and (4) data stream processing in staging
nodes.

When I/O is triggered in the compute nodes, output
data is passed to the PreDatA runtime in the compute
nodes (shown as Stage 1 in Fig. 4). Typical output data
consists of one or more scalars, local arrays, and/or partial
chunks of global arrays. PreDatA executes a user-defined
routine Partial_calculate(), if provided, on the local output
data (shown as Stage la in Fig. 4). This constitutes an
optional first pass of processing on the output using local
and typically deterministic (in terms of delay) operations.
Examples include generating meta-data such as array di-
mension information, calculating local min/max values of
partial array chunks, and filtering out undesired regions. All
output data (scalars, local arrays, partial chunks of global
arrays) are then packed into a contiguous buffer, termed a
packed partial data chunk, using the FFS [18] binary data
encoding facility (shown as Stage 1b in Fig. 4). The structure
of each packed partial data chunk is compatible with the
ADIOS output data group definition, and metadata about
the data structure is embedded in the packed partial data
chunk. A data fetch request is sent to the staging node chosen
by a user-overridable function Route() (shown as Stage lc
in Fig. 4). PreDatA provides an interface that permits the
data operation in Stage la to attach small partial results to
data fetch requests, allowing for additional flexibility in the
staging area. The compute node then resumes computation
while the data movement and operations are performed.

In the Staging Area, each node waits for data fetch re-
quests from compute nodes. When the staging node finishes
gathering requests from all of the compute nodes it serves, it
extracts partial results attached to requests, if any are present,
and it then applies user-defined aggregation functions to
them to generate aggregated results, such as global array
sizes and offsets, prefix sums, and global min/max values
(shown as Stage 2 in Fig. 4). Next, each staging node begins
to fetch packed partial data chunks from compute nodes

Compute Node Staging Node

Application

X
™~ Data Requests @

B8

o

®

B
®

|:| Packed Partial Data Chunk {Mmﬂb Local Processing % Aggregation

["] Aggregated Data l:l Data Request

Figure 4. Overall Data Flow of PreDatA

Stream Processing

(shown as Stage 3 in Fig. 4). Data chunks are processed
by staging nodes one by one in a streaming manner (shown
as Stage 4 in Fig. 4). The aggregated results generated in
Stage 2 are accessible to such stream processing operations.

In summary, PreDatA provides two passes across an
application’s output data. The first pass optionally done
on compute nodes is suitable for operations which have
deterministic delays and do not require global communica-
tions and/or synchronization. The second pass performed on
staging nodes, in a data streaming fashion, can be used to
compute global data properties and/or to reorganize data for
later storage. Data streaming is critical because it is unlikely
for staging nodes to have sufficient memory to hold all of
the raw data generated by multiple and, often, even single
simulation output steps.

C. Stream Processing in the Staging Area

As mentioned above, the output data of each compute
node is packed into a contiguous memory buffer, i.e., a
packed partial data chunk and moved in its entirety into
the Staging Area. From the Staging Area’s perspective,
incoming data consists of a finite number of packed partial
data chunks streamed from compute nodes participating in
the I/O dump. When there are multiple staging nodes, the
packed partial data chunks are split into multiple streams
across these nodes.

Each staging node is responsible for processing a stream
of packed partial data chunks, with each chunk from one
compute process. This is the forth stage of the dataflow
shown in Fig. 4. The processing of such a stream is divided
into five phases (as shown in Fig. 5):

Initialize: the Initialize() function of each operation is
executed once at the beginning of an I/O dump, with
aggregated result data generated from the pre-fetch process
(shown as Stage 2 in Fig. 4) as a parameter to initialize
operation-specific data structures and for other setup tasks.

Map: the Map() function of each operation is executed
on each packed partial data chunk. Intermediate results are
tagged and stored in a local buffer.

Shuffle: when the last chunk within the I/O dump is
processed, partial results are combined locally, if the Com-
bine() function is provided. Each staging node applies the

Partition() function to route intermediate results to other
staging nodes according to the associated tags.

Reduce: each staging node groups intermediate results,
both local and those received from other staging nodes, by
associated tags and then performs the Reduce() function on
each group of intermediate results to aggregate results.

Finalize: when the Reduce phase finishes, each staging
node executes the Finalize() function of each operation,
which writes final results to disk, feeds data to other con-
sumers, and/or performs necessary cleanup.

From this description, it should be apparent that the
PreDatA data processing model is similar to the MapRe-
duce [12] paradigm, with four notable differences. First,
PreDatA’s data processing model requires operations to read
data only once, meaning that data is processed in a streaming
fashion, as done in other streaming implementations of
MapReduce [11]. This is because of limited memory space
on staging nodes, which means that this assumption can be
removed if additional memory (e.g., SSD or other disk stor-
age) were to be made available on those machines. Second,
PreDatA adds Initialize and Finalize phases in order to deal
with input from the application and output to storage or
data transfer to remote nodes, respectively. Third, in contrast
to the MapReduce model, analysis operations running in
the staging area can implement customized data shuffling
and synchronization methods, in our case using the highly-
optimized MPI routines present on the peta-scale machine
(see [53]). This is not only to take advantage of the high end
communication support available on the peta-scale machine
but also to be able to deploy and leverage existing parallel
analysis codes written for science applications. Fourth, the
PreDatA implementation does not use a central master
with global knowledge of data location and task progress,
exploiting the extensive prior knowledge and experience in
the HPC community with how to program and implement
efficient parallel codes.

Custom data operations are plugged into PreDatA middle-
ware by implementing the functions mentioned above. Users
can also customize data movement scheduling policies and
to place the data chunks present within the data stream into
some desired order to ease implementing such data analysis
services. More details about the programming interface can
be found in [53].

The staging area is running as a separate MPI program
launched independently from the simulation. Each MPI
process runs on one staging node. Within each staging
node, there are multiple threads in each MPI process that
exploit concurrency in how they execute different parts of
the execution flow shown in Fig. 5.

D. The DataSpaces Global Data Knowledge Service

The purpose of this section is to show that PreDatA’s
‘in-transit’ and ‘online’ approach to data output and manip-
ulation can be used to implement the model-to-model com-

-

8

e

-

e
g
[=1
=
[¢]
W

Stream Processing in the Staging Area

munications used in coupled high performance codes [3],
[51]. Toward that end, we have integrated into PreDatA the
‘DataSpaces’ data indexing and querying services. DataS-
paces provides high level programmable and managed ser-
vices for (1) data sharing — between operations working on
a common set of data; (2) data redistribution — between
operations with different data discretization and running on
a different number of processors; (3) data indexing — data
hashing for fast access; and (4) data querying — application
data retrieval based on custom selectors. With (1)—(4), it
provides the abstraction of a virtual semantically-specialized
shared data space that can be asynchronously and flexibly
accessed using simple yet powerful operators (e.g., put() and
get()) that are agnostic of the location or distribution of data.

DataSpaces incorporates flexible mechanisms that can
fetch and index data, on-the-fly, from multiple different
sources, as shown in Fig. 6. It can store incoming data
locally in the Staging Area or share it with the collaborating
frameworks, index it for fast access, and serve it in response
to logged or incoming user queries. Datasets composed
of both, homogeneous data types, e.g., doubles, floats or
integers, as well as heterogeneous data types, e.g., aggregate
structures of doubles, floats or integers, are supported.

DataSpaces implements a flexible querying mechanism
that allows applications to request individual values as well
as contiguous regions of data based on simple descriptors
that are semantically meaningful to the application. For ex-
ample, simulation data can be indexed based on its geometric
coordinates within the multi-dimensional discretization used
by the simulation, allowing it to be queried using geometric
descriptors that are meaningful to the application. Queries
may be generated by users or by other applications. For
example, each instance of a distributed querying application
running on multiple nodes can query distinct and relevant
sub-regions of data as needed. Similarly, a user can query
sub-regions of interest only when they are needed or can
register sub-regions of interest for continuous querying. In
the latter case, the user is notified automatically every time
new data items that lie within the regions of interest are
inserted into the space.

DataSpaces also supports aggregation and reduction
queries, e.g., the max/min/average value for a particular
field in a given sub-region. From the perspective of a
querying end user or application, the querying and data
transfer process is transparent and independent of the data

User Queries

Applications/ i
Data Producers 3
)

Staging Nodes

DataSpaces

Sub-domain

Application Queries

N[Sub-domain Query

Decomposition

Figure 6. Example Scenario of Model to Model Coupling with DataSpaces

distribution, i.e., the data comprising the query response may
come from different nodes of the application that generated
the data and served by different DataSpaces framework
nodes.

DataSpaces complements the indexing and querying ser-
vices with an in-memory data storage service. The storage
service can maintain private copies of the data extracted
directly from a running application or store shared copies of
the data processed by collaborating frameworks. The storage
service incorporates a data coherency protocol that manages
interactions with the data and ensures data integrity when
multiple entities simultaneously query the data.

DataSpaces maintains load balancing at two levels. First,
the storage service distributes the data evenly across the
DataSpaces nodes, and second, the indexing service dynam-
ically distributes the index metadata across the DataSpaces
nodes to distribute incoming queries across these nodes.

V. PERFORMANCE EVALUATION

The placement of PreDatA operations can greatly af-
fect the performance of PreDatA analyses as well as the
timeliness of simulation output, thereby potentially greatly
impacting overall system performance. The experimental
evaluations shown in this section evaluate different PreDatA
operators and different placement choices. The goal is to
demonstrate the potential benefits from using the PreDatA
approach and to show that whenever data is processed in-
transit, it is important to be flexible in where the operators
performing such processing are placed. Experimentation
uses two driver applications described in Section II. Sorting,
histogram, and 2D histogram operators are tested for GTC,
where processed particle data is then written into storage
from the Staging Area. For Pixie3D, an array layout re-
organization operation is created. This operation merges
partial array chunks into larger contiguous ones for each
of the eight 3-dimensional arrays in Pixie3D’s output, and it
then writes merged arrays to output. The performance of the
DataSpaces global data knowledge service is also evaluated
with GTC. This demonstrates the feasibility of building
higher-level data services with PreDatA. For brevity, the
implementation details about those operations appear in
[53].

A. Experimental Environment

Experiments are run on the Oak Ridge National Labo-
ratory’s Cray XT4/XT5 Jaguar platform. The XTS5 parti-
tion contains 18,688 compute nodes. Each compute node
contains two quad-core AMD Opteron 2356 (Barcelona)
processors running at 2.3 GHz, with 16GB of DDR2-800
memory, and an attached SeaStar 2+ router. The result-
ing partition contains 149,504 processing cores, more than
300TB of memory, over 6 PB of disk space, and has a peak
performance of 1.38 petaflop/s. The XT4 partition contains
7,832 compute nodes. Each compute node contains a quad-
core AMD Opteron 1354 (Budapest) processor running at
2.1 GHz, 8 GB of DDR2-800 memory,and a SeaStar2 router.
The resulting partition contains 31,328 processing cores,
has more than 62 TB of memory and over 600 TB of
disk space, and offer peak performance of 263 teraflop/s.
Each test case described below is run 5 times, in order to
eliminate disturbances in performance measurements caused
by the shared nature of our experimental environment (i.e.,
other HPC codes running on the same machine as well as
read-based loads imposed on the shared file system). For
this reason, the experimental results shown constitute the
best samples in both the In-Compute-Node and the Staging
configurations.

B. GTC Performance

The GTC experiments are performed on the XTS5 partition
of Jaguar. As is typical with a production run, the GTC jobs
are configured to deploy a single MPI process per node that
spawns 8 OpenMP worker threads, one per core. I/O is only
performed by the MPI processes. For GTC, three operations
are tested: particle sorting, histogram generation, and 2D
histogram generation. Each of these operators is applied to
both the electron and ion particle arrays that are output with
an I/O interval of roughly 120 seconds. Weak scaling is
employed, with 132MB total data written per process for
the two particle arrays. The Staging Area is configured to
deploy 2 MPI processes per node, with 4 worker threads
per MPI process. The size of the Staging Area is adjusted
to maintain a ratio of compute cores to staging cores of 64:1
(1.5%). That is, for each 64 nodes with compute processes
(512 OpenMP worker threads), 1 node (2 staging processes
for a total of 8 worker threads) is employed for staging.

Tests are performed in two ways. First, all operations are
performed in compute nodes, using synchronous MPI-I/O
to write results (‘In-Compute-Node’ configuration). Second,
they are performed in the Staging Area (‘Staging’ configu-
ration).

1) Performance of Individual Operations: In this section
we study the performance results for each operation.

Sorting Operation: Fig. 7(a) and 7(d) compare the perfor-
mance of sorting using the In-Compute-Node configuration
and the Staging configuration. Sorting is communication-
intensive because it involves all-to-all communication and

8

2

DMerge Sort 2

1.
1
B Shuffle Hos
o 08 Dlocal Soxt g
L] 5
0 0

Seconds)

DOPlotting&1/0
L6 B Commurication
BCotputation

OFlottingtd/0

B Communication 2

BComputation &
&

512 1024 2048 4096 @192 16834 512 1024 2048

Hunber of Compute Cores

(a) Sorting in Compute Node

Hunber of Conpute Cores

(b) Histogram in Compute Node

512 1024 2048 4096 8192 16334
Nusher of Compite Cores

@192 16384

(c) 2D Histogram in Compute Node

ER DI/0 and Flotting
38 BComnuni eation,

512(2) 10244) 2043(3) ADGB (1) BLO2(R) 1B3BAGY)
Hunber of Conpute Cores (Husber of Staging Nodes)

(d) Sorting in Staging Area
Figure 7.

has minimal computational demands. When sorting in com-
pute nodes, the data shuffle time among compute nodes
increases dramatically as the operation scales and such costs
are visible to the simulation. In contrast, sorting in the
Staging Area takes at most 33 seconds at all scales, which
is much less than the 120-second I/O interval. This means
that the asynchronous use of the Staging Area for sorting
can mask sorting overheads from the simulation. There are,
however, 30 seconds of latency in the Staging configuration,
which is two orders of magnitude larger than the latency
experienced in the In-Compute-Node configuration. This
tradeoff demonstrates the importance of placement: if the
goal is to optimize simulation time, placing the sorting
operation into the Staging Area is better, but if the latency
of generating sorted data is more critical, it is preferable to
place the operator into compute nodes.

Histogram Operation: As shown in Figs. 7(b) and 7(e),
the histogram operation is computation-dominant, with com-
munication contributing only a very small portion of total
operation time. While performing this style of computation-
intensive operation in the compute nodes takes less wall
clock time, perturbations to total simulation time can be
much larger due to the impact of I/O operation for saving
histogram results. The time for writing the 8 MB histogram
files ranges from 0.25 seconds to 7 seconds, which adds to
the total simulation time. This reveals a different advantage
for the Staging configuration: its ability to insulate the
simulation from variations in file system performance. Since
the increased cost of generating the histogram is hidden
by the asynchronous data transfer and operation, using
the Staging configuration is advantageous. For those cases
where one has computation-intensive operations without a
subsequent I/O operation or if latency is very important,
using the ‘In-Compute-Node’ configuration is superior.

2D Histogram Operation: As with the Histogram oper-
ation, the 2D Histogram is also computation-dominant, as
shown in Figs. 7(c) and 7(f), implying that the conclusions
drawn from this experiments are much like those of the

51220 1024640) 2043() 409(16) B192(2) 18334 (G4)
Husber of Conpute Cores Olunber of Staging Hodes)

(e) Histogram in Staging Area

S12() 1024() 2048(6) 409B018) 8192 (32) 183B4(84)
Humber of Compute Cores Mutber of Staging Nodes)

(f) 2D Histogram in Staging Area

Timing Results for Individual Operations

previous one, modulo the fact that the computation and com-
munication requirements for generating the 2D histograms
are higher.

In summary, the results shown in this section demonstrate
that it is often advantageous to offload PreDatA operations
from compute to staging nodes, since such offloading can
help mask from the simulation the costs and variations
of such operations as well as those of the I/O activities
associated with them. A potential detriment is the increase in
operation latency because of the capacity mismatch between
compute and staging nodes. Future work is needed to
automate placement decisions, where automation would be
based on higher level inputs from application developers and
users and on information about current platform and file
system states.

2) Simulation Performance: This section evaluates GTC
simulation performance in two different configurations.
Fig. 8(b) shows the total execution time of the GTC simu-
lation for the two different configurations at various scales
ranging from 512 to 16,384 compute cores. The Staging
configuration improves the simulation’s total execution time
by 2.7% to 5.1% over the In-Compute-Node configuration
(as shown in Fig. 8(a)).

The breakdown of total execution time (shown in
Fig. 8(b)) explains the performance advantage of the Staging
vs. In-Compute-Node approach. First, the Staging approach
hides write latency via asynchronous data movement. For
example, at the scale of 16,384 compute cores, 8.6 seconds
are required, on average, to write 260GB of particle data
with the ADIOS synchronous MPI-I/O method. The visible
I/0 blocking time with the Staging configuration is reduced
to 0.30 seconds on average. This improvement in write
latency increases with simulation scale. Second, the Staging
approach also insulates the simulation from the increasing
time costs for performing the operations as the simulation
scales, since staging area code runs concurrently and asyn-
chronously with the simulation. For the In-Compute-Node
configuration, the time spent in operations increases from

3.0% to 4.1% as the simulation scales from 512 to 16,384
cores. With the Staging approach, the simulation spends
no time carrying out such operations. While it is true that
the Staging Area experiences a larger proportional time in
performing the operations, the additional latency easily fits
into the simulation’s current I/O period, thereby not affecting
the application’s execution time. Third, potential interference
between asynchronous data movement with the simulation’s
communications can be minimized by properly scheduling
data movement. Specifically, a comparison of main loop
time for the two different configurations shows that staging
may slow down the computation due to contention on the
shared network, especially at large scales, but by properly
scheduling data movement, this interference is controlled to
be less than 6% in the worst case.

Overall, the reduction in visible I/O and operation times
on compute nodes outweighs the interference experienced by
the simulation due to asynchronous I/O, and the insulating
effects of decoupling simulation I/O from variations of file
system performance both improve total simulation time and
reduce variations in simulation performance. These facts
hold despite increased latencies for performing certain Pre-
DatA operations. In terms of total CPU usage, calculated as
total simulation time multiplied by total cores used, the Stag-
ing configuration is less costly compared to the In-Compute-
Node configuration at all scales (as shown in Fig. 8(a)).
There is some decline in these savings when scaling from
8,192 to 16,384 cores, mainly due to the interference of
asynchronous data movement with the simulation’s use of
collectives. Despite this fact, at the scale of 16,384 cores,
running the simulation with the Staging configuration still
saves 98 CPU hours in total compared with the In-Compute-
Node configuration, for a 30 minute simulation run. This
suggests that the Staging approach helps GTC achieve better
scalability in terms of total cost of both simulation and data
preparation.

3) Offline Operation: End users may consider replacing
PreDatA with offline operations, i.e., with operations applied
to data after it has been written to disk. The following
tradeoffs should be considered. First, doing so replaces
the consumption of certain levels of compute and memory
resources on the peta-scale machine with disk storage and
file system use, the latter raising potential concerns for sim-
ulation performance due to file system interference by other
jobs. Second, typically, offline operations, while slower to
perform and exhibiting much higher latency to completion,
can be done cheaply or ‘free’ (in terms of costs charged
to end user accounts), the latter being an odd artifact of
how peta-scale machine costs are imposed on HPC users.
However, for operations that do not generate a reduction
in data and instead, generate approximately equivalent data
in a different organization, such as sorting and layout re-
organization, an offline approach requires additional disk re-
sources for intermediate data storage. In addition, it impacts

—a— Total Execution Time
[—= CPUUsge

://Q:\\

5112 1024 2048 4006 8192 16384
Nurrber of Coropute Cores

Improvement (%5
o o E o o

(a) GTC Simulation Performance and Cost Improvement

1,800

1,700

]

W finalize

O initialize
B main loop

1,600

1,500

Time (Seconds)

1,400

1,300

1,200

n-CN
taging

7 w

g
Q5
L g
=3
2

In-CN
Staging
Staging

=%

16,384

£ In-CN

w

024 2048 4096
Number of Compute Cores

(b) GTC Total Execution Time Breakdown

9.

S

Figure 8. GTC Simulation Performance

the file system due to repeated read/write of the data in
question. For example, when running at the scale of 65,536
cores, the particle data of GTC is 1TB per I/O dump. Offline
sorting would cost 1 TB additional storage space every 120
seconds, and the entire 1 TB would have to be read back to
memory before it is rewritten. This moves the data through
the disk controllers three times rather than once. Third, given
the huge volume of GTC data, the read and write latency
would be hundreds of seconds, making the offline approach
unsuitable for the online monitoring functionality desired by
GTC users.

In-transit, online data analysis is also preferable for oper-
ations like the histogram and 2D histogram. With the offline
approach, using the same 1 TB per I/O dump output, two
trips through the disk controller are required. While the
output of these operations is comparatively small, reading
all of the data to generate the histograms may cause both
potentially large latency and long-term adverse impacts on
file system performance.

4) Evaluation of the DataSpaces Global Data Knowledge
Service: This section shows that the DataSpaces query en-
gine can service queries on particle data in a timely manner,
without blocking the simulation between two successive I/0
operations. Experimental evaluations are performed with a
prototype of the DataSpaces indexing and querying service
deployed on the staging nodes. The particles output by the
GTC application are first sorted using the sorting operation,
and then indexed by DataSpaces, based on their local id and
rank attributes, thereby creating a 2 - 10% x 256 2-D domain
space. This space is then uniformly distributed across the
DataSpaces compute cores in the Staging Area. On average,
at all simulation scales ranging from 512 to 16,384 cores, the
time required to fetch data from the GTC simulation is 20.3
seconds, sorting takes 30.6 seconds, and indexing takes 2.08

Number of Compute Cores (GTG Application)
512 1024 2048 4096 8192 16384

"Setup Time EzEa
Hashing Time
Query time

Time(s)

.32 .64 128
Number of Staging Cores, Querying Cores

Figure 9. Setup, Hashing and Query Time

seconds. This means that in total, it takes no more than 55
seconds for DataSpaces to prepare the data for query, again
well within the 120 second output period used by GTC.

A test querying application that queries the entire domain
space is deployed on additional compute cores (referred to
as ‘querying application cores’ in the subsequent text). In
our experiments, the querying application cores partition the
particle data among themselves and issue 11 consecutive
queries to disjoint regions of the data. The particle sub-
regions are 200MB in size for each querying application
core. Since no a-priori knowledge is assumed about the
existence of the particle data or its distribution, the first
query includes query setup operations, such as hashing, data
discovery, query routing, and data retrieval. This means that
it is significantly more expensive to perform, as seen in
Fig. 9. However, this is a one-time cost and subsequent
queries are much faster. The setup time shown in Fig. 9 is
an average value across the number of querying application
cores, and the hashing time is an average over the number
of setup queries received at each core running a DataSpaces
server in the Staging Area.

The query execution time for different numbers of query-
ing application cores is also plotted in Fig. 9. The plotted
times are an average over the number of queries executed
and over the querying application cores. The query time
increases with the number of cores used since the domain
size increases and is mapped to a larger number of cores
in the staging area. In our example, one instance of the
querying application receives replies to its query from mul-
tiple cores in the DataSpace. The longer query time for the
256 application querying cores is due to load variability and
interference in the host system.

Note that the DataSpaces service indexes particles data
and responds to all queries in less than 80 seconds. Consid-
ering the 120 second I/O interval, such an online querying
service can function effectively and without blocking the
simulation.

C. Pixie3D Performance

Pixie3D performance is evaluated on the XT4 partition of
Jaguar. Production runs use one MPI process per compute

Percent (%)
&
&
=
I
S
=
=]
=
=S
\
g
]
=

—+— Total Exeuction Tire

—a— CPU Usage

Nurrber of Coropute Cores

(a) Pixie3D Simulation Performance and Cost Improve-
ment
1,600

1,550 =

1,500

W finalize
O initialize

1,450 |- B main loop

1,400

Time (Seconds)

1,350
1,300

1,250

1,200

In-CN
Staging

z
7
=

Staging
In-CN
Staging

z
o}
L
1,

0

0 n
8 =
@ 7
g s g
@ = o
24

2,048 4,096 8,192 16,384
Number of Compute Cores

(b) Pixie3D Total Execution Time Breakdown

Figure 10. Pixie3D Simulation Performance

core. The data output from each process mainly consists
of eight double-valued arrays. Each local array is part of
a 3D global array, respectively. Our tests use a 32x32x32
local array size, which is a typical setting for production
runs. For each run, the simulation performs I/O about every
100 seconds. The ratio of compute cores to staging cores
is maintained at 128:1 during weak scaling. Each process
generates about 2 MB of data making this ratio workable.

Pixie3D is tested with an In-Compute-Node configuration
and a Staging configuration. For the In-Compute-Node con-
figuration, each MPI process writes output data to a single
BP file using the ADIOS synchronous MPI-IO method. This
results in a file in which local array chunks are scattered.
In the Staging configuration, output data of compute nodes
are sent to the Staging Area where they are merged to form
larger, contiguous global arrays.

Fig. 10(b) shows the total simulation execution time for
both the In-Compute-Node and Staging configurations. The
Staging configuration slows the simulation in most cases by
0.01% to 0.7% compared to the In-Compute-Node configu-
ration. This is because unlike GTC, Pixie3D does not have
enough computation intensity for asynchronous I/O to be
an effective technique for offloading data. In each iteration,
the inner loop of Pixie3d performs collective communi-
cations (MPI_Reduce and MPI_Bcast) multiple times, and
‘between’ the mass communications, there are computations
that only last about 0.7 seconds. This makes it difficult to
overlap data movement with computation without impacting
Pixie3D’s intensive messaging, as shown by experimental
results demonstrating increases in main loop times due to
asynchronous data movement. Although the I/O blocking
time is well hidden, since it is such a tiny portion of the total
execution time, this savings cannot outweigh the slowdown

=
=3
k=3

—&—merged

P —m— unmer ged

1 20 40 B0 B0 100 120

HNumber of Read Processes

Time (Seconds)
-
- =3

&
-

e
=3
2

Figure 11. Time to read one global array of one time step from two 80GB
BP files. ‘merged’ denotes the read time from a file written from Staging
Area and ‘unmerged’ denotes the read time from a file written from compute
nodes directly. Both files are generated by 4096-compute-core runs.

of computation due to communication interference. The
operations tested for the GTC application were all intended
to be performed before any data analysis were performed,
in order to speed read operations. The same is true for
Pixie3D’s data reorganization operation. While GTC’s op-
erations were a win-win for both writing and reading at all
scales, Pixie3D’s data reorganization requires larger job sizes
to reach a tipping point where simulation performance can
be improved by employing staging. Figure 10(a) shows the
total cost of CPU seconds. As the simulation scales up, the
I/O overhead weighs more in total execution time, and hence
the impact of computation caused by data staging becomes
less evident. Overall, there is a trend that the cost of the
Staging approach catches up with that of the In-Compute-
Node approach with increased simulation scale.

It is worth examining the savings generated during reading
operations due to the reorganized data. Fig. 11 shows the
read performance on two files generated by two 4096-
compute-core runs with Staging and In-Compute-Node con-
figurations, respectively. This result, along with the simula-
tion cost shown in Fig. 10(a), shows that at the scale of 4096
compute cores, 0.93% additional cost in simulation yields 10
times improvement in read performance of output data. This
saving is more evident as scale increases.

In summary, this section’s performance results show that
in-transit data manipulation enabled by PreDatA middleware
can improve the latency to operation completion compared
with the offline approach. It can reduce the overall wall clock
time of the simulation at large scales, and it can reduce the
impact on the shared file system when compared against
both online and offline configurations. It is also shown that
higher-level data services can be efficiently built on top of
PreDatA middleware.

VI. RELATED WORK

In this section we summarize previous research related to
PreDatA work.

Scalable I/0 and Data Analytics. Efficient access, under-
standing and management of voluminous and complex data
generated by scientific simulations presents daunting chal-
lenges to both computational and computer scientists [19],
[36]. Recent work in parallel file systems [8], [35], [48]
and I[/O middleware [22], [30], [38], [50], [52] aims at

optimizing data storage and access for scientific applica-
tion workloads. Beyond pure high I/O bandwidth, however,
scientists also require complex data analysis, search, and
visualization technologies to facilitate better understanding
of their data. Specialized data preparation, such as sorting,
filtering, and indexing, is needed before data can be un-
derstood or visualized [9], [39], [43]. Our work extends
the I/O middleware stack to exploit computational power
along the output data flow to perform data preparation,
characterization, and re-organization, which would facilitate
subsequent data analysis.

Data Staging and Offloading in supercomputers. Previ-
ous work on data staging and asynchronous I/O [4], [16],
[24], [25], [32], [34], [41] derives substantial performance
advantages from hiding I/O latency with asynchronous data
movement. Our recent work [1], [2] shows the importance
of minimizing interference of asynchronous data movement
with the application to achieve overall improvements in
simulation time. One observation is that the computational
resources on staging nodes are often under-utilized and the
time intervals between I/O dumps are sufficiently large for
extra processing on buffered data. In this paper, we take one
step forward and demonstrate the use of staging nodes for
a diversity of data operations to achieve not only high write
performance, but also high read performance and timely
monitoring of output data and simulation.

Active Storage. Active Storage [37] deploys data process-
ing operations directly on the storage nodes where the data
are buffered to reduce the amount of data movement between
storage and compute nodes. The storage nodes have limited
computation and memory resources which are shared among
applications, so one potential problem with Active Storage
is how to manage such resources to meet deadlines for
multiple applications and minimize performance downgrade
of storage nodes. Abacus [5] demonstrates the benefit of
flexible, dynamic function placement in Active Storage, and
we are going to investigate similar mechanisms for PreDatA.

In-situ Data Analytics and Visualization. Hercules [46]
applies an end-to-end approach to tightly couple all simu-
lation components, including meshing, partitioning, solver,
and visualization, and runs all components on the same su-
percomputer. It eliminates intermediate I/O and data move-
ment between simulation components to address the 1/O
bottleneck, but requires scaling data analysis and visualiza-
tion to the level where simulation runs and all simulation
components must be changed to efficiently share data with
each other. PreDatA couples the Staging Area with the
application more loosely and through the ADIOS interface,
thereby requiring minimal changes to application code and
providing improved flexibility in composing the simulation’s
output and analysis pipeline.

Scientific Workflows. Scientific workflow systems like
Pegasus [14] and Kepler [31] are used to automate scientific
data and simulation management. Unlike the end-to-end

approach used in In-situ visualization mentioned above,
components in the workflow are usually connected via a file-
based interface, so that the performance of the workflow is
very sensitive to data placement and movement and is easily
affected by poor I/O performance [13]. PreDatA can serve as
an early stage in output pipeline to apply application-specific
data reduction, validation, and filtering operation before data
is moved to disks, to reduce the data volumes to be processed
in subsequent workflow steps.

Scientific Data Stream Processing. Scientific data stream
processing, such as filtering [6], sampling [47], query [27],
and transformation [23] complements our work. This is
because PreDatA can be used either as an in-transit data
processing framework for implementing streaming process-
ing tasks, or as a data forwarding layer to directly feed data
to existing streaming processing systems.

Code Coupling. Memory-to-memory code coupling ad-
dresses some of the issues faced by PreDatA, such as data
movement and re-distribution [3], [26]. PreDatA provides
the underpinnings for supporting the rich model-model com-
munications needed for inter-application interactions [15].

Interactive Computational Steering. Runtime steering can
aid scientists in debugging and monitoring their simula-
tions [20], [45]. The capability of extracting and inspecting
data from running simulation with small overhead and
interference makes PreDatA a potential infrastructure for
online steering of running application.

Data-intensive Computing in the HPC Domain. Recently,
there is increased interest in building high-level abstractions
and programming models for data intensive applications in
HPC domain. HiMach [44] applies the MapReduce model
to analyze molecular dynamics simulation trajectories and
shows some efficiency at tera-byte scale. In contrast, expe-
riences from implementing materialized ground models [40]
show poor performance of MapReduce because some of
the features provided by MapReduce are unnecessary for
its target application. AllPairs [33] gains similar insights in
that a mismatch between the application workload and the
available MapReduce abstractions can result in poor per-
formance. The two-pass streaming model used by PreDatA
appears sufficient for the applications we have used, but it
remains an important item of future work to investigating
higher level abstractions and a suitable programming model
for future PreDatA codes.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the PreDatA middleware for preparing
and characterizing data ‘in-transit’, that is, while data is
being produced by the large scale simulations running on
peta-scale machines. PreDatA offloads output data from a
running simulation with low-overhead using asynchronous
data extraction. It also exploits the computational power
of staging nodes residing on the peta-scale machine and
associated with each large-scale application to perform select

data manipulations. PreDatA enhances the scalability and
flexibility of current I/O stacks on HEC platforms and is
useful for data pre-processing, runtime data analysis and
inspection. The DataSpaces services now being integrated
into PreDatA also demonstrates its potential utility for rich
model-model interactions in large-scale HPC codes. Perfor-
mance evaluations with several production scientific applica-
tions on ORNL’s peta-scale machines show the feasibility of
the PreDatA approach as well as the performance advantages
derived from using the PreDatA I/O stack compared to
existing synchronous approaches.

Several interesting insights distinguish the class of
preparatory data analysis provided by PreDatA from other
means of running such codes:

Easy data movement. Efficient PreDatA operations lever-
age the ability of the high performance machines to transfer
data to the preparatory processes without causing measurable
overheads to the application.

Global data knowledge. The availability of global knowl-
edge is essential in the pre-processing of data for analysis
and for application interaction.

Flexible partitioning of the pre-analytics pipeline. The
performance requirements for a pre-analytics pipeline re-
quire the ability to flexibly partition complex data processing
operations.

Streaming computation. The large size of data being pro-
cessed and the limitation on available memory space within
the processing area can limit the scope of viable operations
in the processing pipeline. A streaming computational model
circumvents these limitations by providing a window on the
data in which more expansive pipelines can be utilized.

Standard programming model. Scientific developers are
familiar with using standard APIs such as MPI for devel-
oping analytical programs. An architecture that seeks to
address the needs of the scientific user must be able to
utilize standard parallel programs for the pre-analytic data
processing pipeline.

Our future work leverages these insights in several ways.
First, we plan to define a higher level programming model
and abstractions to support a broader set of applications
and pre-data analytics, including online data diagnostics
and code coupling. Second, we are going to investigate
mechanisms for dynamically adapting system configuration
and operation placement to cope with changing resource
availability or performance characteristics. Third, we will
develop performance models for sizing staging areas and
provisioning their services.

ACKNOWLEDGMENT

This research used resources of the National Center
for Computational Sciences at Oak Ridge National Lab-
oratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
ACO05- 000R22725. This research is based in part upon

work supported by the National Science Foundation through
the High- End Computing University Research Activity
(HECURA) Grant Number 0621538. This work was also
partially supported by The Extreme Scale Systems Center
at ORNL and the Department of Defense.

(1]
[2]

3]
[4]

[7]

(8]
91

[10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

REFERENCES

H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan, and M. Wolf. Extending
i/o through high performance data services. In CLUSTER, 2009.

H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.
Datastager: scalable data staging services for petascale applications. In HPDC,
2009.

H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and A. Hilton. Xchange:
coupling parallel applications in a dynamic environment. In CLUSTER, 2004.
N. Alj, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward,
and P. Sadayappan. Scalable i/o forwarding framework for high-performance
computing systems. In CLUSTER, 2009.

K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dynamic function
placement for data-intensive cluster computing. In USENIX Annual Technical
Conference, 2000.

M. D. Beynon, R. Ferreira, T. M. Kurg, A. Sussman, and J. H. Saltz. Datacutter:
Middleware for filtering very large scientific datasets on archival storage systems.
In MSST, 2000.

R. Brightwell, T. Hudson, K. T. Pedretti, R. Riesen, and K. D. Underwood.
Implementation and performance of portals 3.3 on the cray xt3. In CLUSTER,
2005.

P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig. Small-file
access in parallel file systems. In IPDPS, 2009.

S. Center. Scidac scientific data management center.
sdmcenter/, September 2009.

L. Chacén. A non-staggered, conservative, Vs B — = 0, finite-volume scheme
for 3D implicit extended magnetohydrodynamics in curvilinear geometries.
Computer Physics Communications, 163:143-171, Nov. 2004.

T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. Technical Report UCB/EECS-2009-136, EECS Department,
University of California, Berkeley, Oct 2009.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. In OSDI, 2004.

E. Deelman and A. Chervenak. Data management challenges of data-intensive
scientific workflows. In CCGRID, 2008.

E. Deelman, G. Singh, M. hui Su, J. Blythe, A. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus:
a framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal, 13:219-237, 2005.

C. Docan, M. Parashar, J. Cummings, N. Podhorszki, and S. Klasky. Exper-
iments with Memory-to-Memory Coupling for End-to-End Fusion Simulation
Workflows. Technical Report TR-104, Center for Autonomic Computing (CAC),
Rutgers University, July 2009.

C. Docan, M. Parashar, and S. Klasky.
asynchronous data io. In HPDC, 2008.
G. Eisenhauer. Evpath: event transport middleware layer. http://www.cc.gatech.
edu/systems/projects/EVPath/, September 2009.

G. Eisenhauer, F. E. Bustamante, and K. Schwan. Native data representation: An
efficient wire format for high-performance distributed computing. IEEE Trans.
Parallel Distrib. Syst., 13(12):1234-1246, 2002.

J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber.
Scientific data management in the coming decade. SIGMOD Rec., 34(4):34-41,
2005.

W. Gu, G. Eisenhauer, K. Schwan, and J. S. Vetter. Falcon: On-line moni-
toring for steering parallel programs. Concurrency - Practice and Experience,
10(9):699-736, 1998.

C. Jones, K.-L. Ma, A. Sanderson, and L. R. M. Jr. Visual interrogation of
gyrokinetic particle simulations. J. Phys.: Conf. Ser., 78(012033):6, 2007.

W. keng Liao and A. N. Choudhary. Dynamically adapting file domain
partitioning methods for collective i/o based on underlying parallel file system
locking protocols. In SC, 2008.

S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney. Grid
-based parallel data streaming implemented for the gyrokinetic toroidal code. In
SC, 2003.

J. Lee, R. B. Ross, S. Atchley, M. Beck, and R. Thakur. Mpi-io/l: efficient
remote i/0 for mpi-io via logistical networking. In IPDPS, 2006.

J. Lee, R. B. Ross, R. Thakur, X. Ma, and M. Winslett. Rfs: efficient and flexible
remote file access for mpi-io. In CLUSTER, 2004.

J.-Y. Lee and A. Sussman. High performance communication between parallel
programs. In IPDPS, 2005.

Y. Liu, N. Vijayakumar, and B. Plale.
computational science. In GRID, 2006.

https://sdm.1bl.gov/

Dart: a substrate for high speed

Stream processing in data-driven

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[52]

[53]

J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible io
and integration for scientific codes through the adaptable io system (adios). In
CLADE at HPDC, 2008.

J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Input/output apis and data
organization for high performance scientific computing. In PDSW at SC, 2008.
J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich io
methods for portable high performance io. In In IPDPS, 2009.

B. Ludéscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039-1065,
2006.

X. Ma, J. Lee, and M. Winslett. High-level buffering for hiding periodic output
cost in scientific simulations. /EEE Trans. Parallel Distrib. Syst., 17(3):193-204,
2006.

C. Moretti, J. Bulosan, D. Thain, and P. J. Flynn. All-pairs: An abstraction for
data-intensive cloud computing. In IPDPS, 2008.

A. Nisar, W. keng Liao, and A. N. Choudhary. Scaling parallel i/o performance
through i/o delegate and caching system. In SC, 2008.

R. Oldfield, L. Ward, R. Riesen, A. B. Maccabe, P. Widener, and T. Kordenbrock.
Lightweight i/o for scientific applications. In CLUSTER, 2006.

PDSI. Scidac petascale data storage institute. http://www.pdsi-scidac.org/,
September 2009.

J. Piernas, J. Nieplocha, and E. J. Felix. Evaluation of active storage strategies
for the lustre parallel file system. In SC, 2007.

M. Polte, J. Simsa, W. Tantisiriroj, and G. Gibson. Fast log-based concurrent
writing of checkpoints. In PDSW at SC, 2008.

O. Riibel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. R. Geddes, E. Cormier-
Michel, S. Ahern, G. H. Weber, P. Messmer, H. Hagen, B. Hamann, and E. W.
Bethel. High performance multivariate visual data exploration for extremely
large data. In SC, 2008.

S. W. Schlosser, M. P. Ryan, R. Taborda-Rios, J. Lépez, D. R. O’Hallaron, and
J. Bielak. Materialized community ground models for large-scale earthquake
simulation. In SC, 2008.

K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed
collective i/o in panda. In SC, 1995.

R. R. Sinha and M. Winslett. Multi-resolution bitmap indexes for scientific data.
ACM Trans. Database Syst., 32(3):16, 2007.

K. Stockinger, J. Shalf, E. W. Bethel, and K. Wu. Dex: Increasing the capability
of scientific data analysis pipelines by using efficient bitmap indices to accelerate
scientific visualization. In SSDBM, 2005.

T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. @.
Jensen, J. L. Klepeis, P. Maragakis, P. Miller, K. A. Stafford, and D. E.
Shaw. A scalable parallel framework for analyzing terascale molecular dynamics
simulation trajectories. In SC, 2008.

T. Tu, H. Yu, J. Bielak, O. Ghattas, J. C. Lépez, K.-L. Ma, D. R. O’Hallaron,
L. Ramirez-Guzman, N. Stone, R. Taborda-Rios, and J. Urbanic. Analytics
challenge - remote runtime steering of integrated terascale simulation and
visualization. In SC, 2006.

T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and D. R.
O’Hallaron. Scalable systems software - from mesh generation to scientific
visualization: an end-to-end approach to parallel supercomputing. In SC, 2006.
H. Wang, S. Parthasarathy, A. Ghoting, S. Tatikonda, G. Buehrer, T. M. Kurg,
and J. H. Saltz. Design of a next generation sampling service for large scale
data analysis applications. In ICS, 2005.

B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B. Mueller, J. Small, J. Zelenka,
and B. Zhou. Scalable performance of the panasas parallel file system. In FAST,
2008.

H. Yu and K.-L. Ma. A study of i/o methods for parallel visualization of large-
scale data. Parallel Comput., 31(2):167-183, 2005.

W. Yu, J. S. Vetter, and S. Oral. Performance characterization and optimization
of parallel i/o on the cray xt. In /PDPS, 2008.

L. Zhang and M. Parashar. Seine: a dynamic geometry-based shared-space
interaction framework for parallel scientific applications. Concurrency and
Computation: Practice and Experience, 18(15):1951-1973, 2006.

X. Zhang, S. Jiang, and K. Davis. Making resonance a common case: A high-
performance implementation of collective i/o on parallel file systems. In /PDPS,
2009.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar,
N. Podhorszki, K. Schwan, and M. Wolf. Predata - preparatory data analytics
on peta-scale machines. Technical Report GIT-CERCS-10-01, Georgia Institute
of Technology, January 2010.

