
EFFIS: an End-to-end Framework for Fusion
Integrated Simulation

Julian Cummings
Center for Advanced Computing Research

California Institute of Technology
Pasadena, CA 91125, USA

cummings@cacr.caltech.edu

Alexander Sim and Arie Shoshani
Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

Jay Lofstead and Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

Ciprian Docan and Manish Parashar
Dept. of Electrical and Computer Engineering

Rutgers University
Piscataway, NJ 08854, USA

Scott Klasky, Norbert Podhorszki, and Roselyne Barreto
Oak Ridge National Laboratory

Oak Ridge, TN 37830, USA

Abstract—The purpose of the Fusion Simulation Project is to
develop a predictive capability for integrated modeling of
magnetically confined burning plasmas. In support of this
mission, the Center for Plasma Edge Simulation has developed an
End-to-end Framework for Fusion Integrated Simulation
(EFFIS) that combines critical computer science technologies in
an effective manner to support leadership class computing and
the coupling of complex plasma physics models. We describe here
the main components of EFFIS and how they are being utilized to
address our goal of integrated predictive plasma edge simulation.

Keywords-fusion simulation; code integration; computational
framework; leadership class computing

I. INTRODUCTION
The Center for Plasma Edge Simulation (CPES) is one of

three multi-institutional research programs initiated by the US
Department of Energy (DOE) in 2005 to address pressing
needs for more advanced predictive modeling capabilities in
the area of magnetically confined fusion plasmas. CPES and
the other centers were established as key components of the
Fusion Simulation Project (FSP) to investigate a range of
physics issues deemed crucial to the understanding and
efficient design and operation of next-generation tokamak
fusion reactor devices such as ITER (the International
Thermonuclear Experimental Reactor). Because the core
confinement properties of tokamak plasmas are known to have
strong correlation with plasma edge conditions, CPES was
specifically tasked with developing a new integrated and
predictive plasma edge simulation package applicable to
existing magnetic fusion devices and future burning plasma
experiments like ITER. This ambitious goal requires
cooperation across several research institutions and a well
coordinated effort involving experts in plasma physics,
computer science, and applied mathematics.

The physics research focus of CPES has been to study the
interplay of neoclassical transport, microturbulence, and
magnetohydrodynamic (MHD) instabilities in the plasma edge.
Neoclassical physics and microturbulence are most completely
modeled using a kinetic approach such as a particle-in-cell
(PIC) simulation, while MHD modes are more efficiently
studied with a fluid code. Hence, an integrated code framework
is needed to couple newly developed edge kinetic simulation
capabilities with existing state-of-the-art MHD models using
the most advanced computer science technologies. Such a
framework can enable physicists to study the dynamic
interaction of kinetic effects that cause a buildup of the edge
pedestal in plasma density and temperature profiles and large
bootstrap currents with so-called Edge Localized Modes
(ELMs) that may limit pedestal growth and tokamak reactor
performance [1]. An integrated model of this pedestal-ELM
cycle that can make accurate predictions of such features as the
maximum pedestal height and width and the strength of heat
flux to device wall components due to ELMs is critical to the
overall goals of the FSP.

Most of the computer science efforts of CPES have been to
develop tools to facilitate this integrated plasma edge model
within the larger scheme of an End-to-end Framework for
Fusion Integrated Simulation, or EFFIS. The coupling of
kinetic and MHD codes to address pedestal-ELM physics poses
many challenges in terms of data exchange and code activity
coordination and provides an excellent driver for the
development of useful computer science technologies.
However, the process of research within CPES has
demonstrated that our computer science needs stretch well
beyond basic code coupling and into the areas of massive data
I/O, post-processing and archival storage, close collaboration
of simulation scientists via Web technologies, and the
integration of existing and widely accepted analysis tools to
provide a complete end-to-end system for effective large-scale

computing and simulation. EFFIS is intended to address these
needs by providing a set of computer science tools that present
the physics researcher with a simple means of planning,
launching, monitoring, analyzing and sharing fusion plasma
simulations on leadership class petascale computing platforms.

II. LEADERSHIP CLASS COMPUTING AND EFFIS

A. Description of Leadership Class Computing Facilities
Leadership class computing has brought unprecedented

amounts of supercomputing power to open science computing.
There are three major US Department of Energy (DOE)
computing facilities: Argonne National Laboratory (ANL), Oak
Ridge National Laboratory (ORNL), and the National Energy
Research Scientific Computing Center (NERSC). The two
major computing platforms at these facilities are the IBM Blue
Gene P and Cray XT-5 systems. Each computer has over 100K
cores with fast file systems, but obtaining high levels of
performance for application codes has proved to be
challenging.

One of the new programs in DOE intended to utilize high
number of processors for simulations running on these
machines is the INCITE program [2]. Current users have
access to over 75M CPU hours in one year. If we compare this
to the fastest computer that was available just four years ago in
DOE open science computing, the Cray XT-3 at ORNL with
3748 cores, we see that users are getting the equivalent of 2.3
CPU years of processing power of four years ago. This now
gives users the ability to compute for much longer, on much
higher processor counts, and generate much more data in a
simulation. Data I/O and workflow monitoring have become
critical for large simulations and are now a crucial part of the
CPES and other projects. Code coupling is also becoming more
common as users begin to address physics issues that span
multiple spatiotemporal scales and require simulation models
that are tuned to different physical regimes or conditions.

B. Brief Description of EFFIS
The End-to-end Framework for Fusion Integrated

Simulation (EFFIS) has successfully been used to automate
integrated simulation of XGC0 [3] kinetic edge pedestal
buildup, ELITE [4] stability-boundary check, M3D [5] edge
localized mode crash, and back to XGC0 pedestal buildup, for
multiple ELM cycles. EFFIS has also been recently used to
monitor long running XGC1 simulations of microturbulence in
the plasma edge, and to monitor core turbulence simulation
codes GEM, GTC, and GTS. EFFIS uses highly advanced
inter-operating computer science tools that include fast
adaptable I/O, workflow management, fast presentation of
image data on a web-based dashboard, the collection and
management of provenance metadata, and wide-area data
transfer.

One of the cornerstones of EFFIS is the ADaptable I/O
System (ADIOS), which provides access to a variety of data
transport mechanisms and data formats. The second main piece
of this framework is the Kepler workflow system, which is
used to orchestrate many parallel tasks on multiple computer
platforms. The final component of this framework is the

eSimMon dashboard, where users can monitor and analyze
long running simulations on the web. A diagram of EFFIS is
shown in Figure 1.

Figure 1. Schematic diagram of EFFIS components.

One of the keys to the technologies is the provenance and
metadata capturing system, which is enabled in all aspects of
EFFIS and allows provenance information to flow from the
compute nodes over to the provenance capturing system. This
allows users to operate on the data without knowledge of files,
but simply using the names of the variables in the simulation.
Furthermore, users on the dashboard can analyze the data and
move the data to remote resources using SRM-lite for WAN
data movement.

Visualization is another key to our system, as this combines
high-speed data I/O with analysis. Our team has been working
to provide adaptors for both Matlab and Visit to read in
ADIOS-BP binary data files, yielding high speed parallel
methods to input and output data with these analysis and
visualization packages.

III. CODE COUPLING FOR THE PEDESTAL-ELM CYCLE
As discussed in Section I, the precise details of the cyclical

process of edge pedestal buildup in the plasma density and
temperature profiles that can drive ELM instabilities, followed
by a nonlinear ELM evolution and "crash" that releases free
energy from plasma profile gradients and creates a modified
MHD equilibrium, is of great interest in magnetic confinement
fusion research. A procedure for coupling kinetic and MHD
codes together to study this pedestal-ELM cycle have been
reported elsewhere [6] and will only be briefly recapped here.
In this coupling scenario, the gyrokinetic PIC edge simulation
code XGC0 [3] reads an eqdsk file contained fitted magnetic
equilibrium data for a fusion device and experiment of interest.
The code is initialized with model profiles for the plasma edge
density and temperature, and it simulates the edge pedestal
buildup due to kinetic effects. XGC0 periodically dumps
plasma density, temperature, and bootstrap current data into an
m3d.in file, which is processed by the M3D-OMP code using a
Grad-Shafranov solver to generate an updated eqdsk file.
XGC0 can then reread the eqdsk file in order to continue
evolving the plasma particles through the updated equilibrium.

At the same time, the linear MHD stability of the updated
equilibrium is checked by passing the eqdsk file, along with a
peqdsk file containing plasma edge density profile data from
XGC0, to the ELITE code [4]. This ideal MHD code can
quickly assess the linear growth rate of several sample ELMs in
the intermediate mode number range of n=5-30 and identify
any modes that exceed a critical instability threshold. When an
unstable mode is found, we can stop the XGC0 kinetic model,
launch a nonlinear simulation of the ELM using the parallel
M3D-MPP code [5], and then eventually recover a modified
MHD equilibrium from this simulation that can be used to
begin a new XGC0 run that will start the cycle over again.

The pedestal-ELM cycle simulation described here requires
quite a lot of intricate coordination of activities between the
four main simulation codes involved. In addition, there are a
few utility codes and post-processing tools that play important
roles in allowing the main codes to interact and enabling the
user to effectively monitor and analyze the coupled simulation.
The orchestration of such activities within EFFIS is performed
by the Kepler workflow system, as described in Section V.

This kinetic-MHD code coupling uses a memory-to-disk
and disk-to-memory approach, and the data I/O can be
prescribed and managed using ADIOS. The amounts of data
exchanged between codes are relatively small, however. The
axisymmetric magnetic equilibrium data is typically given on a
257x257 mesh, and the plasma profile data are 1D functions of
the poloidal magnetic flux with 50-100 points each. Thus, a
valid alternate approach is to use memory-to-memory coupling,
thus avoiding the overheads of reading, writing, and copying
lots of small data files. The use of this technique to couple the
XGC0 and M3D-OMP codes is discussed in Section IV.C
below.

Another more detailed version of the pedestal-ELM
problem that is currently being studied involves running the
XGC0 and M3D-MPP codes simultaneously during the ELM
crash phase and performing periodic exchanges of plasma
profiles and the 3D perturbed magnetic fields. The main
purpose of such a coupling is to examine the dynamic effects of
ELM evolution on the heat flux into the divertor region in the
kinetic simulation. Naturally, such a "tight" code coupling
would require larger, more frequent data exchanges.

IV. ADIOS

A. Overview of I/O Challenges and ADIOS Architecture
Researchers have been continuing to face significant

problems while optimizing I/O on leadership class computers,
workstations, and even single-processor workstations. They are
forced to make difficult coding decisions and to use either
complex APIs, such as parallel HDF5 and NetCDF, or simple
non-metadata rich I/O in binary or ASCII format. These
decisions often force them into using non-optimal I/O practices
when porting their code to new architectures, and may even
render the I/O useless.

The ADaptable I/O System (ADIOS) [7] is essentially a
componentization of the I/O layer. It provides an easy-to-use

programming interface, which can be as simple as Fortran file
I/O statements. ADIOS abstracts I/O metadata information and
data structures from the source code into an external XML file,
which can reduce code pollution and create the connection
between high-level APIs and underlying I/O implementation
details, such as buffering and scheduling. By separating the
detailed I/O implementation from the APIs, ADIOS also allows
users to simply change the declaration of the transport methods
in the XML file without any source code modification. Figure 2
illustrates the architecture of the ADIOS framework.

Figure 2. ADIOS framework architecture.

The ADIOS architecture exploits modern web technologies
by using an external XML metadata file to describe all the I/O-
related variables used in the code. These collections of data are
described in terms of groups, which typically correspond to the
individual subroutines. The file catalogues the following
metadata for each element of these collections: the element
name, data type, element path (similar to HDF5 path), and
static or dynamic array size, as well as any annotations. If the
array represents a mesh, information on the global bounds of
this array and ghost regions used in real-time visualization is
encoded at the XML group level. For each data
collection/group, it describes the selected transport mechanism
and parameters, as well as timing information for the data
transmissions. Using this information, the ADIOS I/O
implementation can then control when, how, and how much
data is written or transferred at a time, thereby enabling
efficient overlapping with computation phases of the scientific
application and proper pacing to optimize the writing or
transmission throughput.

Some of the key features of ADIOS are that it allows for
extremely fast I/O [8], has a high level of resiliency [9], and
can be used for creating multiple operations in I/O staging [10].
FSP projects will eventually need to couple multiple codes
together. ADIOS can also be used to select code coupling
methods; for example, to switch between file I/O and memory-
to-memory code coupling. Users can select at runtime which
method they want. Finally, using the provenance capturing
method [11] ADIOS can capture the provenance information in
both cases, without changing the codes or the workflow.

B. ADIOS Performance

ADIOS development has initially concentrated on write
performance. In Figure 3, we show that we can achieve 80
GB/s when writing data on the Cray XT-5 at ORNL. This level
of performance allows researchers to write metadata-rich data,
in the ADIOS-BP format, which can easily be converted to
HDF5 or NetCDF.

Figure 3. ADIOS write performance on Cray XT-5.

Our recent studies have now concentrated on read
performance of ADIOS, and compare the performance of
reading ADIOS-BP files to reading files from parallel NetCDF.
We choose to compare with parallel NetCDF since this file
format keeps a logically contiguous view of the data. Our
initial results show that for GTC particle data written from 32K
cores, over 32GB of data can be read into 256 processors in
less than one second.

C. DataSpaces framework
The fusion simulation applications targeted by EFFIS

consist of coupled, complex parallel computer codes that run
independently, progress at different speeds, and have to
cooperate at run time by exchanging parameters and data
values. DataSpaces is a dynamic and asynchronous interaction
framework that provides the abstraction of a virtual distributed
shared space. This space can be associatively accessed by
application nodes using a simple API (for example, put() and
get() calls) and with semantically meaningful addressing (e.g.,
the multidimensional coordinate space discretization used by
the application). Access to DataSpaces is transparent; that is, it
is independent of data/node location and distribution.

The architecture of the DataSpaces framework consists of
three key layers. The communication and data transport layer
provides the core communication functionality for data
transfers as well as control of message exchange between the
compute nodes of the space. This layer is based on DART [12],
which allows fast decoupled and asynchronous remote data
transfers with low latency and small overheads. DART is
implemented using the RDMA communication paradigm via
the Portals RDMA library, and it enables direct memory-to-
memory communication. It provides flexible asynchronous
APIs that allows an application to overlap computation with
data communication and thus reduces the overheads due to I/O
operations. DART is available as an optional transport method
within ADIOS [7].

The directory layer of DataSpaces enables nodes to query
metadata associated with the data in the shared space using
semantically specialized query abstractions. It is implemented
as a dynamic hash table across the nodes of the space, and it
provides load balancing support when data is inserted in the
space, as well as look-up support when data is retrieved from
the space. It also supports subscribe/notification interactions
and includes garbage collection mechanisms.

The storage layer maintains the actual data (i.e., the objects
put into the space). It provides a data coherency protocol,
which defines when an object can be inserted, updated,
destroyed or removed from the space. This protocol ensures
synchronization when the data objects are accessed by multiple
application nodes.

The API provided by DataSpaces is simple and flexible and
enables multiple usage patterns for applications coupling and
interactions. The example shown in Figure 4 demonstrates the
use of DataSpaces to couple two fusion codes, XGC0 and
M3D-OMP, which run on different numbers of nodes on the
jaguar system at NCCS and have different data
decompositions. The execution of each code is dependent on
data values and parameters produced by the other code.
Specifically, XGC0 computes the plasma radial profiles
(density, pressure, and self-generated current), which it has to
send to the M3D-OMP code. M3D-OMP needs the plasma
profile data to compute the new MHD equilibrium, and then
has to send back to the XGC0 code this updated equilibrium.

Figure 4. XGC0 - M3D coupling using the DataSpaces framework.

The implementation consists of a client component that is
integrated with the two application codes and allows for
dynamic data exchange at run time, and a space component that
runs on a cloud of “staging nodes”, which are dedicated nodes
for the space and independent of the application nodes. The
DataSpaces client in the XGC0 application inserts plasma
profile data objects into the shared space, and the DataSpaces
client in the M3D-OMP code extracts these data objects and
passes them to the application. In the next step, the DataSpaces
client in the M3D-OMP code inserts MHD equilibrium data
objects back into the shared space, and the DataSpaces client in
the XGC0 code extracts these data objects and passes them to
the application.

Initial experiments with this coupling scenario ran XGC0
on 16 compute processors, M3D-OMP on 1 processor, and the
DataSpaces space component on 4 processors. The amount of
data exchanged between the two codes was relatively small, yet
communication through the space was much faster than the
approach based on file-exchange, which has been traditionally
used for such coupling. We expect the benefits of using

DataSpaces to increase as the scale of the codes and the amount
of data exchanged increase.

V. WORKFLOWS FOR MONITORING AND DATA MOVEMENT
In EFFIS, multiple codes are coupled running on different

ORNL and other HPC resources, while they are constantly
monitored. We need a framework that allows performing
actions in parallel; e.g., executing a parameter sweep of ELITE
for stability checking while generating diagnostic plots from
the XGC0 output. Since we want to monitor the XGC0 code
status via diagnostic plots accessible from a dashboard, we
need a finer grain resolution of task definition than a single job.
Recent data from XGC0 should be transferred from the
supercomputer to a satellite cluster, where the data is converted
first and then plots are created from it, and this pipeline of tasks
should be repeated as long as XGC0 is running.

We have chosen Kepler [13], a scientific workflow
environment, as our technology for constructing code coupling
applications. We have built Kepler workflows for orchestrating
the execution of the codes, for transferring data among them,
and for processing of their outputs. The coupling workflow is
built as a process network, where each task is continuously
running in a separate thread and is communicating with other
tasks via predefined connections. Both task parallel and
pipeline parallel processing are provided by this computational
model, while certain packages allowed for remote SSH
command execution and job-oriented operations. The Kepler
framework and the coupling workflow are described in detail in
[6].

The NCCS machines are protected by One-Time Password
(OTP) authentication, so an established connection should be
kept alive for the whole coupling session to avoid repeated
authentications requiring a person to type in a new passcode
each time. Since single jobs can run up to 24 hours on these
systems and connections can live longer than this period, this
does not prohibit us from monitoring simulations or performing
the Full-ELM coupling scenario, which can last from a couple
of hours up to a day. The SSH package we developed for
Kepler to support access to OTP authenticated sites and the
mechanisms for how we can run workflows as jobs that access
such sites are described in [14]. Users are now, however,
performing large-scale simulations divided up into multiple-
day jobs (a couple of days for XGC1 but several months for
astrophysics and combustion codes currently). For such long
simulations, we cannot expect that the workflow stays
connected to a supercomputer for the entire period; therefore,
we need another way to get into these systems. Another new
requirement is to launch workflows from the dashboard; that is,
the user being connected through a web browser while the
server side processes submitting the workflow that connects to
the supercomputer in the name of the user.

NCCS has established an internal, grid certificate based
authentication system by deploying GSI-SSH servers on the
supercomputer jaguar as well as on the data processing cluster
ewok, as shown in Figure 5. A modified MyProxy server,
which authenticates the user with OTP instead of a user-
defined passphrase, is also installed at NCCS. This allows one
to establish an SSH connection to these machines using a grid

certificate, but strictly only from some other NCCS resource
and only with proxy certificates downloaded from the NCCS
MyProxy server. This way, NCCS ensures that the user
accessing the resource has been authenticated with OTP and
the certificate is kept inside the safe environment of NCCS.

Figure 5. Grid certificate based authentication at ORNL.

The new (additional) authentication method enables both
workflows running for an extended period of time to access
data of a simulation and users to submit workflows and other
jobs on NCCS resources from the dashboard. The dashboard
can retrieve a proxy certificate from the MyProxy server when
the user provides an OTP passcode, and then use the certificate
to login to the processing cluster ewok in the name of the user
and submit jobs; e.g., a new coupling workflow or a Matlab
analysis of some data from past coupling simulations.
Similarly, a Kepler workflow can connect to the supercomputer
jaguar repeatedly within the expiration period of the proxy
certificate to submit a simulation or to access data from a
running simulation.

VI. DASHBOARD

A. Technologies and Key Features
The eSimMon dashboard is a front-end tool for simulation

monitoring that helps physicists manage, analyze, visualize and
share data produced by their simulations. Adobe Flash is the
technology of choice for the client side, while the server-side
programming is a combination of PHP and MySQL queries.

The main objective when choosing this technology was to
shift the focus of researchers away from the underlying IT
details, such as file locations and formats, and onto the science
itself. In other words, the ease of use is an invariable requisite
in the eSimMon design. Other basic requirements include
interactivity and responsiveness. There are several technology
choices available for Rich Internet Applications [15] that create
dynamic pages with local interaction and asynchronous
communication with the server. A fundamental characteristic
of most physical variables of simulation codes is their
evolution through time. Videos allow scientists to monitor
variables at different points in time. While playing movies is a
requirement, it is also necessary to allow closer scrutiny of the

data at each time step; hence, the need for vector graphics with
zooming and panning capabilities. Flash has native support for
videos and vector graphics. In addition Adobe has invested
considerable effort in making their ubiquitous Flash Player fast,
robust, scalable and reliable. Among the Web 2.0 technologies
available, Flash provides all the desired features for the
dashboard, including interactivity and cross-browser
consistency but more importantly scalability and support for
videos and vector graphics [16].

On the back end, the eSimMon dashboard uses PHP and a
MySQL database to make the links between user requests on
the interface and raw data files. The Kepler workflow records
provenance information in the database, which the dashboard
later queries to make the accurate connections. The provenance
recorded includes the history of all data transformations and
lineage of data products (data provenance), all operations
executed by the workflow system (process provenance), and
environment information combined with the source code of
executed simulations and all actions of the users on the data
(system provenance). The recording of provenance information
and the algorithms to track the provenance for the dashboard
use is described in detail in [17]. It is the key in enabling the
dashboard to hide the details from the users and raise the focus
from files to scientific variables.

The latest emphasis in the dashboard development is on
data analysis; notably, analysis using vector graphics. Users
have the option of looking at x-y plots in a resizable vector
graphics window. They have zooming and panning capabilities
as well as formatting preferences for plotting variables (see
Figure 6). Scientists also have the ability to overlay two
variables on one vector graphics cell. The ultimate purpose of
the vector graphics is to allow scientists to draw and redraw
plots until they are satisfied with their results, then click on a
Publish button to request a publication quality image or movie
to be generated on the back end.

Figure 6. Dashboard New Feature: Vector Graphics.

Another example of analysis on the dashboard is the
eSimMon calculator. This calculator tool allows users to
perform basic math operations on the simulation variables
(such as generating the difference between two graphs) and
view the results on the fly. The eSimMon calculator was
originally implemented for XGC1 variables. It works with x-y

plots generated from NetCDF data files and can be extended to
other types of x-y plots. To take the analysis one step further,
users will soon be able to upload their own analysis routines
and run them from the dashboard.

The same general concept is valid throughout the dashboard
and carries on into the analysis. Users do not need to know
where the appropriate raw data files are; neither do they need to
know which software is used on the back end or how to use it.
By simply clicking on movies and calculator operators, they
compose an expression which the back end later interprets and
executes.

B. Wide Area Data Movement
Using the dashboard to monitor simulations involves

visualizing different image products that were extracted from
code diagnostic output or checkpoint files. The user viewing an
image may get an unexpected result, and therefore wish to
download the original file or files from which the image was
produced to his/her own site for further investigation. In order
to support such functionality on the dashboard, three tasks need
to be performed: (i) identify the original files from which the
image was produced by the workflow system by their Logical
File Names (LFNs); (ii) identify the current physical location
where the files reside, referred to as Physical File Names
(PFNs); and (iii) invoke a file movement tool to move the files
from the physical locations to the destination site. All of these
tasks and their details need to be invisible to the user; all the
user needs to provide is the information about his/her
destination site, and the rest should be taken care of
automatically. The first two tasks can be accomplished by
extracting the desired LFNs and PFNs from information
provided by provenance recording. Since such information is
stored in a database, these tasks require simple queries to the
database. The third task is more complicated and is described
below.

There are several requirements for accomplishing the data
movement task. First, the data mover tool needs to accept large
multi-file requests (10s-100s of files or more) and schedule the
file transfers. This implies that the data movement happens
asynchronously – that is, the user does not have to be logged
into the dashboard for this action to take place. The user should
be able to log onto the dashboard at a later time and find out the
status of the file movement request. Second, the file movement
must be robust. This implies that all file transfers must be
monitored, and if failures occur, re-transmission must take
place automatically to recover from such failures. Third, the
data mover tool needs to take advantage of the available
bandwidth by transferring multiple files concurrently. Fourth,
the data mover tool should be able to support multiple transfer
protocols in order to match the destination transfer servers.
Fifth, it should be possible to invoke this tool on behalf of the
user directly on the dashboard, acting as a “client program”
behind a firewall and not as a general data mover service.

A tool meeting these requirements named the DataMover
has been fully implemented and tested with large multi-file
transfers, and it supports multiple transfer protocols (e.g., SCP,
SFTP, FTP, GridFTP, HTTPS). The implementation is based
on a client version of the Storage Resource Manager [18]

Login
Through

Dashboard

Disk
Cache

SSH Server

Remote (user’s) site

SSH
Request

GridFTP/FTP/
SCP

transfers Disk
Cache

DataMover

datamover.xml

Local Commands

Login
Through

Dashboard

Disk
Cache

SSH Server

Remote (user’s) site

SSH
Request

GridFTP/FTP/
SCP

transfers Disk
Cache

DataMover

datamover.xml

Local Commands

server implementation. Operation of the DataMover is shown
schematically in Figure 7. It uses an XML file for the
description of what needs to be transferred, uses SSH to
establish connection to remote sites, and uses multi-threading
for concurrent transfers. In one representative test of the
connection between LBNL and ORNL (which potentially
supports a 1 Gbps transfer rate), a rate of 93MB/s (0.744 Gbps)
was observed using concurrent transfers.

Figure 7. The DataMover is invoked through the dashboard and manages the
transfer of files to the user’s remote site.

VII. CONCLUSIONS
To address the many challenges of producing an integrated

edge plasma simulation model, the Center for Plasma Edge
Simulation has developed EFFIS, an End-to-end Framework
for Fusion Integrated Simulation. EFFIS consists of a set of key
computer science technologies, including the Adaptive I/O
System (ADIOS), Kepler scientific workflows, and the
eSimMon dashboard, which have been developed in tandem
and customized to closely fit the needs of fusion simulation
scientists. The application of these EFFIS tools has enabled
CPES researchers to explore complex code coupling scenarios
and to more easily launch, monitor, manage and analyze their
plasma simulations on leadership class computing platforms

ACKNOWLEDGMENTS
This work is part of the ongoing research activities within

the Center for Plasma Edge Simulation, a SciDAC Fusion
Simulation Prototype center that is supported by the Office of
Fusion Energy Sciences and the Office of Advanced Scientific
Computing Research within the US Department of Energy. We
are grateful to the National Center for Computational Science
at Oak Ridge National Laboratory and the National Energy
Research Scientific Computing Center at Lawrence Berkeley
National Laboratory for access to and support of their
computing resources. We would especially like to thank NCCS
system administrators Sergey Shpanskiy and Josh Lothian for
their ongoing support in installing and maintaining the services
we need for our framework.

REFERENCES
[1] P. B. Snyder et al., "Edge localized modes and the pedestal: A model

based on coupled peeling-ballooning modes", Phys. Plasmas, vol. 9, p.
2037, May 2002.

[2] US DOE Office of Science, INCITE Leadership Computing,
http://www.er.doe.gov/ascr/incite, May 2009.

[3] C. S. Chang, S. Ku and H. Weitzner, "Numerical study of neoclassical
plasma pedestal in a tokamak geometry", Phys. Plasmas, vol. 11, p.
2649, May 2004.

[4] H. R. Wilson, P. B. Snyder, G. T. A. Huysmans and R. L. Miller,
"Numerical studies of edge localized instabilities in tokamaks", Phys.
Plasmas, vol. 9, p. 1277, April 2002.

[5] W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss and L. E.
Sugiyama, "Plasma simulation studies using multilevel physics models",
Phys. Plasmas, vol. 6, p. 1796, May 1999.

[6] J. Cummings et al., "Plasma Edge Kinetic-MHD Modeling in
Tokamaks Using Kepler Workflow for Code Coupling, Data
Management and Visualization", Commun. Comput. Phys., vol. 4(3), pp.
675-702, September 2008.

[7] S. Klasky et al., "Adaptive IO System", Proceedings of the 50th Cray
User Group meeting (CUG 2008), Helsinki, Finland, May 2008.

[8] J. Lofstead, S. Klasky, M. Booth, H. Abbasi, F. Zheng, M. Wolf and K.
Schwan, "Petascale IO using the Adaptable IO System", Proceedings of
the 51st Cray User Group meeting (CUG 2009), Atlanta, GA, May 2009.

[9] J. Lofstead, F. Zheng, S. Klasky and K. Schwan, "Adaptable, Metadata
Rich IO Methods for Portable High Performance IO", Proceedings of the
23rd IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2009), Rome, Italy, May 2009.

[10] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan and M. Wolf,
"Extending I/O through High Performance Data Services", to appear at
Cluster Computing 2009, New Orleans, LA, August 2009.

[11] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and C. Jin, "Flexible
IO and Integration for Scientific Codes through the Adaptable IO
System (ADIOS)", Proceedings of the 6th ACM/IEEE International
Workshop on Challenges of Large Applications in Distributed
Environments (CLADE 2008), Boston, MA, June 2008.

[12] C. Docan, M. Parashar and S. Klasky, "DART: A Substrate for High
Speed Asynchronous Data IO", Proceedings of the 17th IEEE
Symposium on High Performance Distributed Computing (HPDC 2008),
Boston, MA, June 2008.

[13] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao and Y. Zhao, “Scientific Workflow Management and
the Kepler System”, Concurrency and Computation: Practice &
Experience, vol. 18(10), p. 1039, August 2006.

[14] N. Podhorszki and S. Klasky,”Workflows in a secure environment”,
Proceedings of the 7th International Conference on Distributed and
Parallel Systems (DAPSYS 2008), Debrecen, Hungary, September 2008.

[15] J. Allaire, "Macromedia Flash MX -- A next-generation rich client",
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf,
March 2002.

[16] R. Barreto, S. Klasky, N. Podhorszki, P. Mouallem and M. Vouk,
“Collaboration Portal for Petascale Simulations”, Proceedings of the
2009 International Symposium on Collaborative Technologies and
Systems (CTS 2009), Baltimore, MD, May 2009.

[17] P. Mouallem, R. Barreto, S. Klasky, N. Podhorszki and M. Vouk,
“Tracking Files in the Kepler Provenance Framework”, Proceedings of
the 21st International Conference on Scientific and Statistical Database
Management (SSDBM 2009), New Orleans, LA, June 2009 [Lecture
Notes in Computer Science, vol. 5566, Springer, 2009, pp. 273-282].

[18] A. Shoshani, A. Sim and J. Gu, "Storage Resource Managers: Essential
Components for the Grid", in Grid Resource Management: State of the
Art and Future Trends, J. Nabrzyski, J. M. Schopf and J. Weglarz, Eds.,
Kluwer Academic Publishers, 2003.

	I. Introduction
	Leadership Class Computing and EFFIS
	A. Description of Leadership Class Computing Facilities
	B. Brief Description of EFFIS

	III. Code Coupling for the Pedestal-ELM Cycle
	IV. ADIOS
	A. Overview of I/O Challenges and ADIOS Architecture
	B. ADIOS Performance
	C. DataSpaces framework

	V. Workflows for Monitoring and Data Movement
	VI. Dashboard
	A. Technologies and Key Features
	B. Wide Area Data Movement

	VII. Conclusions
	Acknowledgments
	References

