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Abstract—The purpose of the Fusion Simulation Project is to 
develop a predictive capability for integrated modeling of 
magnetically confined burning plasmas. In support of this 
mission, the Center for Plasma Edge Simulation has developed an 
End-to-end Framework for Fusion Integrated Simulation 
(EFFIS) that combines critical computer science technologies in 
an effective manner to support leadership class computing and 
the coupling of complex plasma physics models. We describe here 
the main components of EFFIS and how they are being utilized to 
address our goal of integrated predictive plasma edge simulation. 

Keywords-fusion simulation; code integration; computational 
framework; leadership class computing 

I.  INTRODUCTION 
The Center for Plasma Edge Simulation (CPES) is one of 

three multi-institutional research programs initiated by the US 
Department of Energy (DOE) in 2005 to address pressing 
needs for more advanced predictive modeling capabilities in 
the area of magnetically confined fusion plasmas. CPES and 
the other centers were established as key components of the 
Fusion Simulation Project (FSP) to investigate a range of 
physics issues deemed crucial to the understanding and 
efficient design and operation of next-generation tokamak 
fusion reactor devices such as ITER (the International 
Thermonuclear Experimental Reactor). Because the core 
confinement properties of tokamak plasmas are known to have 
strong correlation with plasma edge conditions, CPES was 
specifically tasked with developing a new integrated and 
predictive plasma edge simulation package applicable to 
existing magnetic fusion devices and future burning plasma 
experiments like ITER. This ambitious goal requires 
cooperation across several research institutions and a well 
coordinated effort involving experts in plasma physics, 
computer science, and applied mathematics. 

The physics research focus of CPES has been to study the 
interplay of neoclassical transport, microturbulence, and 
magnetohydrodynamic (MHD) instabilities in the plasma edge. 
Neoclassical physics and microturbulence are most completely 
modeled using a kinetic approach such as a particle-in-cell 
(PIC) simulation, while MHD modes are more efficiently 
studied with a fluid code. Hence, an integrated code framework 
is needed to couple newly developed edge kinetic simulation 
capabilities with existing state-of-the-art MHD models using 
the most advanced computer science technologies. Such a 
framework can enable physicists to study the dynamic 
interaction of kinetic effects that cause a buildup of the edge 
pedestal in plasma density and temperature profiles and large 
bootstrap currents with so-called Edge Localized Modes 
(ELMs) that may limit pedestal growth and tokamak reactor 
performance [1]. An integrated model of this pedestal-ELM 
cycle that can make accurate predictions of such features as the 
maximum pedestal height and width and the strength of heat 
flux to device wall components due to ELMs is critical to the 
overall goals of the FSP.  

Most of the computer science efforts of CPES have been to 
develop tools to facilitate this integrated plasma edge model 
within the larger scheme of an End-to-end Framework for 
Fusion Integrated Simulation, or EFFIS. The coupling of 
kinetic and MHD codes to address pedestal-ELM physics poses 
many challenges in terms of data exchange and code activity 
coordination and provides an excellent driver for the 
development of useful computer science technologies.  
However, the process of research within CPES has 
demonstrated that our computer science needs stretch well 
beyond basic code coupling and into the areas of massive data 
I/O, post-processing and archival storage, close collaboration 
of simulation scientists via Web technologies, and the 
integration of existing and widely accepted analysis tools to 
provide a complete end-to-end system for effective large-scale 



 

computing and simulation. EFFIS is intended to address these 
needs by providing a set of computer science tools that present 
the physics researcher with a simple means of planning, 
launching, monitoring, analyzing and sharing fusion plasma 
simulations on leadership class petascale computing platforms. 

II. LEADERSHIP CLASS COMPUTING AND EFFIS 

A. Description of Leadership Class Computing Facilities 
Leadership class computing has brought unprecedented 

amounts of supercomputing power to open science computing. 
There are three major US Department of Energy (DOE) 
computing facilities: Argonne National Laboratory (ANL), Oak 
Ridge National Laboratory (ORNL), and the National Energy 
Research Scientific Computing Center (NERSC). The two 
major computing platforms at these facilities are the IBM Blue 
Gene P and Cray XT-5 systems. Each computer has over 100K 
cores with fast file systems, but obtaining high levels of 
performance for application codes has proved to be 
challenging.  

One of the new programs in DOE intended to utilize high 
number of processors for simulations running on these 
machines is the INCITE program [2]. Current users have 
access to over 75M CPU hours in one year. If we compare this 
to the fastest computer that was available just four years ago in 
DOE open science computing, the Cray XT-3 at ORNL with 
3748 cores, we see that users are getting the equivalent of 2.3 
CPU years of processing power of four years ago. This now 
gives users the ability to compute for much longer, on much 
higher processor counts, and generate much more data in a 
simulation. Data I/O and workflow monitoring have become 
critical for large simulations and are now a crucial part of the 
CPES and other projects. Code coupling is also becoming more 
common as users begin to address physics issues that span 
multiple spatiotemporal scales and require simulation models 
that are tuned to different physical regimes or conditions.   

B. Brief Description of EFFIS 
The End-to-end Framework for Fusion Integrated 

Simulation (EFFIS) has successfully been used to automate 
integrated simulation of XGC0 [3] kinetic edge pedestal 
buildup, ELITE [4] stability-boundary check, M3D [5] edge 
localized mode crash, and back to XGC0 pedestal buildup, for 
multiple ELM cycles. EFFIS has also been recently used to 
monitor long running XGC1 simulations of microturbulence in 
the plasma edge, and to monitor core turbulence simulation 
codes GEM, GTC, and GTS. EFFIS uses highly advanced 
inter-operating computer science tools that include fast 
adaptable I/O, workflow management, fast presentation of 
image data on a web-based dashboard, the collection and 
management of provenance metadata, and wide-area data 
transfer.   

One of the cornerstones of EFFIS is the ADaptable I/O 
System (ADIOS), which provides access to a variety of data 
transport mechanisms and data formats. The second main piece 
of this framework is the Kepler workflow system, which is 
used to orchestrate many parallel tasks on multiple computer 
platforms. The final component of this framework is the 

eSimMon dashboard, where users can monitor and analyze 
long running simulations on the web. A diagram of EFFIS is 
shown in Figure 1.  

Figure 1.  Schematic diagram of EFFIS components. 

One of the keys to the technologies is the provenance and 
metadata capturing system, which is enabled in all aspects of 
EFFIS and allows provenance information to flow from the 
compute nodes over to the provenance capturing system. This 
allows users to operate on the data without knowledge of files, 
but simply using the names of the variables in the simulation. 
Furthermore, users on the dashboard can analyze the data and 
move the data to remote resources using SRM-lite for WAN 
data movement.  

Visualization is another key to our system, as this combines 
high-speed data I/O with analysis. Our team has been working 
to provide adaptors for both Matlab and Visit to read in 
ADIOS-BP binary data files, yielding high speed parallel 
methods to input and output data with these analysis and 
visualization packages.  

III. CODE COUPLING FOR THE PEDESTAL-ELM CYCLE 
As discussed in Section I, the precise details of the cyclical 

process of edge pedestal buildup in the plasma density and 
temperature profiles that can drive ELM instabilities, followed 
by a nonlinear ELM evolution and "crash" that releases free 
energy from plasma profile gradients and creates a modified 
MHD equilibrium, is of great interest in magnetic confinement 
fusion research. A procedure for coupling kinetic and MHD 
codes together to study this pedestal-ELM cycle have been 
reported elsewhere [6] and will only be briefly recapped here. 
In this coupling scenario, the gyrokinetic PIC edge simulation 
code XGC0 [3] reads an eqdsk file contained fitted magnetic 
equilibrium data for a fusion device and experiment of interest. 
The code is initialized with model profiles for the plasma edge 
density and temperature, and it simulates the edge pedestal 
buildup due to kinetic effects. XGC0 periodically dumps 
plasma density, temperature, and bootstrap current data into an 
m3d.in file, which is processed by the M3D-OMP code using a 
Grad-Shafranov solver to generate an updated eqdsk file. 
XGC0 can then reread the eqdsk file in order to continue 
evolving the plasma particles through the updated equilibrium. 



 

At the same time, the linear MHD stability of the updated 
equilibrium is checked by passing the eqdsk file, along with a 
peqdsk file containing plasma edge density profile data from 
XGC0, to the ELITE code [4]. This ideal MHD code can 
quickly assess the linear growth rate of several sample ELMs in 
the intermediate mode number range of n=5-30 and identify 
any modes that exceed a critical instability threshold. When an 
unstable mode is found, we can stop the XGC0 kinetic model, 
launch a nonlinear simulation of the ELM using the parallel 
M3D-MPP code [5], and then eventually recover a modified 
MHD equilibrium from this simulation that can be used to 
begin a new XGC0 run that will start the cycle over again. 

The pedestal-ELM cycle simulation described here requires 
quite a lot of intricate coordination of activities between the 
four main simulation codes involved. In addition, there are a 
few utility codes and post-processing tools that play important 
roles in allowing the main codes to interact and enabling the 
user to effectively monitor and analyze the coupled simulation. 
The orchestration of such activities within EFFIS is performed 
by the Kepler workflow system, as described in Section V.  

This kinetic-MHD code coupling uses a memory-to-disk 
and disk-to-memory approach, and the data I/O can be 
prescribed and managed using ADIOS. The amounts of data 
exchanged between codes are relatively small, however. The 
axisymmetric magnetic equilibrium data is typically given on a 
257x257 mesh, and the plasma profile data are 1D functions of 
the poloidal magnetic flux with 50-100 points each. Thus, a 
valid alternate approach is to use memory-to-memory coupling, 
thus avoiding the overheads of reading, writing, and copying 
lots of small data files. The use of this technique to couple the 
XGC0 and M3D-OMP codes is discussed in Section IV.C 
below. 

Another more detailed version of the pedestal-ELM 
problem that is currently being studied involves running the 
XGC0 and M3D-MPP codes simultaneously during the ELM 
crash phase and performing periodic exchanges of plasma 
profiles and the 3D perturbed magnetic fields. The main 
purpose of such a coupling is to examine the dynamic effects of 
ELM evolution on the heat flux into the divertor region in the 
kinetic simulation. Naturally, such a "tight" code coupling 
would require larger, more frequent data exchanges. 

IV. ADIOS 

A. Overview of I/O Challenges and ADIOS Architecture 
Researchers have been continuing to face significant 

problems while optimizing I/O on leadership class computers, 
workstations, and even single-processor workstations. They are 
forced to make difficult coding decisions and to use either 
complex APIs, such as parallel HDF5 and NetCDF, or simple 
non-metadata rich I/O in binary or ASCII format. These 
decisions often force them into using non-optimal I/O practices 
when porting their code to new architectures, and may even 
render the I/O useless. 

The ADaptable I/O System (ADIOS) [7] is essentially a 
componentization of the I/O layer. It provides an easy-to-use 

programming interface, which can be as simple as Fortran file 
I/O statements. ADIOS abstracts I/O metadata information and 
data structures from the source code into an external XML file, 
which can reduce code pollution and create the connection 
between high-level APIs and underlying I/O implementation 
details, such as buffering and scheduling. By separating the 
detailed I/O implementation from the APIs, ADIOS also allows 
users to simply change the declaration of the transport methods 
in the XML file without any source code modification. Figure 2  
illustrates the architecture of the ADIOS framework.  

Figure 2.  ADIOS framework architecture. 

The ADIOS architecture exploits modern web technologies 
by using an external XML metadata file to describe all the I/O-
related variables used in the code. These collections of data are 
described in terms of groups, which typically correspond to the 
individual subroutines. The file catalogues the following 
metadata for each element of these collections: the element 
name, data type, element path (similar to HDF5 path), and 
static or dynamic array size, as well as any annotations. If the 
array represents a mesh, information on the global bounds of 
this array and ghost regions used in real-time visualization is 
encoded at the XML group level. For each data 
collection/group, it describes the selected transport mechanism 
and parameters, as well as timing information for the data 
transmissions. Using this information, the ADIOS I/O 
implementation can then control when, how, and how much 
data is written or transferred at a time, thereby enabling 
efficient overlapping with computation phases of the scientific 
application and proper pacing to optimize the writing or 
transmission throughput. 

Some of the key features of ADIOS are that it allows for 
extremely fast I/O [8], has a high level of resiliency [9], and 
can be used for creating multiple operations in I/O staging [10]. 
FSP projects will eventually need to couple multiple codes 
together. ADIOS can also be used to select code coupling 
methods; for example, to switch between file I/O and memory-
to-memory code coupling. Users can select at runtime which 
method they want. Finally, using the provenance capturing 
method [11] ADIOS can capture the provenance information in 
both cases, without changing the codes or the workflow. 

B. ADIOS Performance 



 

 

ADIOS development has initially concentrated on write 
performance. In Figure 3, we show that we can achieve 80 
GB/s when writing data on the Cray XT-5 at ORNL. This level 
of performance allows researchers to write metadata-rich data, 
in the ADIOS-BP format, which can easily be converted to 
HDF5 or NetCDF.  

Figure 3.  ADIOS write performance on Cray XT-5. 

Our recent studies have now concentrated on read 
performance of ADIOS, and compare the performance of 
reading ADIOS-BP files to reading files from parallel NetCDF. 
We choose to compare with parallel NetCDF since this file 
format keeps a logically contiguous view of the data. Our 
initial results show that for GTC particle data written from 32K 
cores, over 32GB of data can be read into 256 processors in 
less than one second.  

C. DataSpaces framework 
The fusion simulation applications targeted by EFFIS 

consist of coupled, complex parallel computer codes that run 
independently, progress at different speeds, and have to 
cooperate at run time by exchanging parameters and data 
values. DataSpaces is a dynamic and asynchronous interaction 
framework that provides the abstraction of a virtual distributed 
shared space. This space can be associatively accessed by 
application nodes using a simple API (for example, put() and 
get() calls) and with semantically meaningful addressing (e.g., 
the multidimensional coordinate space discretization used by 
the application). Access to DataSpaces is transparent; that is, it 
is independent of data/node location and distribution. 

The architecture of the DataSpaces framework consists of 
three key layers. The communication and data transport layer 
provides the core communication functionality for data 
transfers as well as control of message exchange between the 
compute nodes of the space. This layer is based on DART [12], 
which allows fast decoupled and asynchronous remote data 
transfers with low latency and small overheads. DART is 
implemented using the RDMA communication paradigm via 
the Portals RDMA library, and it enables direct memory-to-
memory communication. It provides flexible asynchronous 
APIs that allows an application to overlap computation with 
data communication and thus reduces the overheads due to I/O 
operations.  DART is available as an optional transport method 
within ADIOS [7]. 

The directory layer of DataSpaces enables nodes to query 
metadata associated with the data in the shared space using 
semantically specialized query abstractions. It is implemented 
as a dynamic hash table across the nodes of the space, and it 
provides load balancing support when data is inserted in the 
space, as well as look-up support when data is retrieved from 
the space. It also supports subscribe/notification interactions 
and includes garbage collection mechanisms.  

The storage layer maintains the actual data (i.e., the objects 
put into the space). It provides a data coherency protocol, 
which defines when an object can be inserted, updated, 
destroyed or removed from the space. This protocol ensures 
synchronization when the data objects are accessed by multiple 
application nodes.  

The API provided by DataSpaces is simple and flexible and 
enables multiple usage patterns for applications coupling and 
interactions. The example shown in Figure 4 demonstrates the 
use of DataSpaces to couple two fusion codes, XGC0 and 
M3D-OMP, which run on different numbers of nodes on the 
jaguar system at NCCS and have different data 
decompositions. The execution of each code is dependent on 
data values and parameters produced by the other code. 
Specifically, XGC0 computes the plasma radial profiles 
(density, pressure, and self-generated current), which it has to 
send to the M3D-OMP code. M3D-OMP needs the plasma 
profile data to compute the new MHD equilibrium, and then 
has to send back to the XGC0 code this updated equilibrium.  

Figure 4.  XGC0 - M3D coupling using the DataSpaces framework. 

The implementation consists of a client component that is 
integrated with the two application codes and allows for 
dynamic data exchange at run time, and a space component that 
runs on a cloud of “staging nodes”, which are dedicated nodes 
for the space and independent of the application nodes. The 
DataSpaces client in the XGC0 application inserts plasma 
profile data objects into the shared space, and the DataSpaces 
client in the M3D-OMP code extracts these data objects and 
passes them to the application. In the next step, the DataSpaces 
client in the M3D-OMP code inserts MHD equilibrium data 
objects back into the shared space, and the DataSpaces client in 
the XGC0 code extracts these data objects and passes them to 
the application.  

Initial experiments with this coupling scenario ran XGC0 
on 16 compute processors, M3D-OMP on 1 processor, and the 
DataSpaces space component on 4 processors. The amount of 
data exchanged between the two codes was relatively small, yet 
communication through the space was much faster than the 
approach based on file-exchange, which has been traditionally 
used for such coupling. We expect the benefits of using 



 

DataSpaces to increase as the scale of the codes and the amount 
of data exchanged increase. 

V. WORKFLOWS FOR MONITORING AND DATA MOVEMENT 
In EFFIS, multiple codes are coupled running on different 

ORNL and other HPC resources, while they are constantly 
monitored. We need a framework that allows performing 
actions in parallel; e.g., executing a parameter sweep of ELITE 
for stability checking while generating diagnostic plots from 
the XGC0 output. Since we want to monitor the XGC0 code 
status via diagnostic plots accessible from a dashboard, we 
need a finer grain resolution of task definition than a single job. 
Recent data from XGC0 should be transferred from the 
supercomputer to a satellite cluster, where the data is converted 
first and then plots are created from it, and this pipeline of tasks 
should be repeated as long as XGC0 is running.  

We have chosen Kepler [13], a scientific workflow 
environment, as our technology for constructing code coupling 
applications. We have built Kepler workflows for orchestrating 
the execution of the codes, for transferring data among them, 
and for processing of their outputs. The coupling workflow is 
built as a process network, where each task is continuously 
running in a separate thread and is communicating with other 
tasks via predefined connections. Both task parallel and 
pipeline parallel processing are provided by this computational 
model, while certain packages allowed for remote SSH 
command execution and job-oriented operations. The Kepler 
framework and the coupling workflow are described in detail in 
[6]. 

The NCCS machines are protected by One-Time Password 
(OTP) authentication, so an established connection should be 
kept alive for the whole coupling session to avoid repeated 
authentications requiring a person to type in a new passcode 
each time. Since single jobs can run up to 24 hours on these 
systems and connections can live longer than this period, this 
does not prohibit us from monitoring simulations or performing 
the Full-ELM coupling scenario, which can last from a couple 
of hours up to a day. The SSH package we developed for 
Kepler to support access to OTP authenticated sites and the 
mechanisms for how we can run workflows as jobs that access 
such sites are described in [14]. Users are now, however, 
performing large-scale simulations divided up into multiple-
day jobs (a couple of days for XGC1 but several months for 
astrophysics and combustion codes currently). For such long 
simulations, we cannot expect that the workflow stays 
connected to a supercomputer for the entire period; therefore, 
we need another way to get into these systems. Another new 
requirement is to launch workflows from the dashboard; that is, 
the user being connected through a web browser while the 
server side processes submitting the workflow that connects to 
the supercomputer in the name of the user.  

NCCS has established an internal, grid certificate based 
authentication system by deploying GSI-SSH servers on the 
supercomputer jaguar as well as on the data processing cluster 
ewok, as shown in Figure 5. A modified MyProxy server, 
which authenticates the user with OTP instead of a user-
defined passphrase, is also installed at NCCS. This allows one 
to establish an SSH connection to these machines using a grid 

certificate, but strictly only from some other NCCS resource 
and only with proxy certificates downloaded from the NCCS 
MyProxy server. This way, NCCS ensures that the user 
accessing the resource has been authenticated with OTP and 
the certificate is kept inside the safe environment of NCCS. 

Figure 5.  Grid certificate based authentication at ORNL. 

The new (additional) authentication method enables both 
workflows running for an extended period of time to access 
data of a simulation and users to submit workflows and other 
jobs on NCCS resources from the dashboard. The dashboard 
can retrieve a proxy certificate from the MyProxy server when 
the user provides an OTP passcode, and then use the certificate 
to login to the processing cluster ewok in the name of the user 
and submit jobs; e.g., a new coupling workflow or a Matlab 
analysis of some data from past coupling simulations. 
Similarly, a Kepler workflow can connect to the supercomputer 
jaguar repeatedly within the expiration period of the proxy 
certificate to submit a simulation or to access data from a 
running simulation. 

VI. DASHBOARD 

A. Technologies and Key Features 
The eSimMon dashboard is a front-end tool for simulation 

monitoring that helps physicists manage, analyze, visualize and 
share data produced by their simulations.  Adobe Flash is the 
technology of choice for the client side, while the server-side 
programming is a combination of PHP and MySQL queries.  

The main objective when choosing this technology was to 
shift the focus of researchers away from the underlying IT 
details, such as file locations and formats, and onto the science 
itself. In other words, the ease of use is an invariable requisite 
in the eSimMon design. Other basic requirements include 
interactivity and responsiveness. There are several technology 
choices available for Rich Internet Applications [15] that create 
dynamic pages with local interaction and asynchronous 
communication with the server. A fundamental characteristic 
of most physical variables of simulation codes is their 
evolution through time. Videos allow scientists to monitor 
variables at different points in time. While playing movies is a 
requirement, it is also necessary to allow closer scrutiny of the 



 

data at each time step; hence, the need for vector graphics with 
zooming and panning capabilities. Flash has native support for 
videos and vector graphics. In addition Adobe has invested 
considerable effort in making their ubiquitous Flash Player fast, 
robust, scalable and reliable. Among the Web 2.0 technologies 
available, Flash provides all the desired features for the 
dashboard, including interactivity and cross-browser 
consistency but more importantly scalability and support for 
videos and vector graphics [16]. 

On the back end, the eSimMon dashboard uses PHP and a 
MySQL database to make the links between user requests on 
the interface and raw data files. The Kepler workflow records 
provenance information in the database, which the dashboard 
later queries to make the accurate connections. The provenance 
recorded includes the history of all data transformations and 
lineage of data products (data provenance), all operations 
executed by the workflow system (process provenance), and 
environment information combined with the source code of 
executed simulations and all actions of the users on the data 
(system provenance). The recording of provenance information 
and the algorithms to track the provenance for the dashboard 
use is described in detail in [17]. It is the key in enabling the 
dashboard to hide the details from the users and raise the focus 
from files to scientific variables.  

The latest emphasis in the dashboard development is on 
data analysis; notably, analysis using vector graphics. Users 
have the option of looking at x-y plots in a resizable vector 
graphics window. They have zooming and panning capabilities 
as well as formatting preferences for plotting variables (see 
Figure 6). Scientists also have the ability to overlay two 
variables on one vector graphics cell. The ultimate purpose of 
the vector graphics is to allow scientists to draw and redraw 
plots until they are satisfied with their results, then click on a 
Publish button to request a publication quality image or movie 
to be generated on the back end.  

Figure 6.  Dashboard New Feature: Vector Graphics. 

Another example of analysis on the dashboard is the 
eSimMon calculator. This calculator tool allows users to 
perform basic math operations on the simulation variables 
(such as generating the difference between two graphs) and 
view the results on the fly. The eSimMon calculator was 
originally implemented for XGC1 variables. It works with x-y 

plots generated from NetCDF data files and can be extended to 
other types of x-y plots. To take the analysis one step further, 
users will soon be able to upload their own analysis routines 
and run them from the dashboard. 

The same general concept is valid throughout the dashboard 
and carries on into the analysis. Users do not need to know 
where the appropriate raw data files are; neither do they need to 
know which software is used on the back end or how to use it. 
By simply clicking on movies and calculator operators, they 
compose an expression which the back end later interprets and 
executes. 

B. Wide Area Data Movement 
Using the dashboard to monitor simulations involves 

visualizing different image products that were extracted from 
code diagnostic output or checkpoint files. The user viewing an 
image may get an unexpected result, and therefore wish to 
download the original file or files from which the image was 
produced to his/her own site for further investigation.  In order 
to support such functionality on the dashboard, three tasks need 
to be performed: (i) identify the original files from which the 
image was produced by the workflow system by their Logical 
File Names (LFNs); (ii) identify the current physical location 
where the files reside, referred to as Physical File Names 
(PFNs); and (iii) invoke a file movement tool to move the files 
from the physical locations to the destination site. All of these 
tasks and their details need to be invisible to the user; all the 
user needs to provide is the information about his/her 
destination site, and the rest should be taken care of 
automatically. The first two tasks can be accomplished by 
extracting the desired LFNs and PFNs from information 
provided by provenance recording. Since such information is 
stored in a database, these tasks require simple queries to the 
database. The third task is more complicated and is described 
below.   

There are several requirements for accomplishing the data 
movement task. First, the data mover tool needs to accept large 
multi-file requests (10s-100s of files or more) and schedule the 
file transfers. This implies that the data movement happens 
asynchronously – that is, the user does not have to be logged 
into the dashboard for this action to take place. The user should 
be able to log onto the dashboard at a later time and find out the 
status of the file movement request. Second, the file movement 
must be robust. This implies that all file transfers must be 
monitored, and if failures occur, re-transmission must take 
place automatically to recover from such failures. Third, the 
data mover tool needs to take advantage of the available 
bandwidth by transferring multiple files concurrently. Fourth, 
the data mover tool should be able to support multiple transfer 
protocols in order to match the destination transfer servers. 
Fifth, it should be possible to invoke this tool on behalf of the 
user directly on the dashboard, acting as a “client program” 
behind a firewall and not as a general data mover service.   

A tool meeting these requirements named the DataMover 
has been fully implemented and tested with large multi-file 
transfers, and it supports multiple transfer protocols (e.g., SCP, 
SFTP, FTP, GridFTP, HTTPS). The implementation is based 
on a client version of the Storage Resource Manager [18] 
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server implementation. Operation of the DataMover is shown 
schematically in Figure 7. It uses an XML file for the 
description of what needs to be transferred, uses SSH to 
establish connection to remote sites, and uses multi-threading 
for concurrent transfers.  In one representative test of the 
connection between LBNL and ORNL (which potentially 
supports a 1 Gbps transfer rate), a rate of 93MB/s (0.744 Gbps) 
was observed using concurrent transfers. 

Figure 7.  The DataMover is invoked through the dashboard and manages the 
transfer of files to the user’s remote site. 

VII. CONCLUSIONS 
To address the many challenges of producing an integrated 

edge plasma simulation model, the Center for Plasma Edge 
Simulation has developed EFFIS, an End-to-end Framework 
for Fusion Integrated Simulation. EFFIS consists of a set of key 
computer science technologies, including the Adaptive I/O 
System (ADIOS), Kepler scientific workflows, and the 
eSimMon dashboard, which have been developed in tandem 
and customized to closely fit the needs of fusion simulation 
scientists. The application of these EFFIS tools has enabled 
CPES researchers to explore complex code coupling scenarios 
and to more easily launch, monitor, manage and analyze their 
plasma  simulations on leadership class computing platforms 

ACKNOWLEDGMENTS 
This work is part of the ongoing research activities within 

the Center for Plasma Edge Simulation, a SciDAC Fusion 
Simulation Prototype center that is supported by the Office of 
Fusion Energy Sciences and the Office of Advanced Scientific 
Computing Research within the US Department of Energy. We 
are grateful to the National Center for Computational Science 
at Oak Ridge National Laboratory and the National Energy 
Research Scientific Computing Center at Lawrence Berkeley 
National Laboratory for access to and support of their 
computing resources. We would especially like to thank NCCS 
system administrators Sergey Shpanskiy and Josh Lothian for 
their ongoing support in installing and maintaining the services 
we need for our framework. 

REFERENCES 
[1] P. B. Snyder et al., "Edge localized modes and the pedestal: A model 

based on coupled peeling-ballooning modes", Phys. Plasmas, vol. 9, p. 
2037, May 2002. 

[2] US DOE Office of Science, INCITE Leadership Computing, 
http://www.er.doe.gov/ascr/incite, May 2009. 

[3] C. S. Chang,  S. Ku and H. Weitzner, "Numerical study of neoclassical 
plasma pedestal in a tokamak geometry", Phys. Plasmas, vol. 11, p. 
2649, May 2004. 

[4] H. R. Wilson, P. B. Snyder, G. T. A. Huysmans and R. L. Miller, 
"Numerical studies of edge localized instabilities in tokamaks", Phys. 
Plasmas, vol. 9, p. 1277, April 2002. 

[5] W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss and L. E. 
Sugiyama, "Plasma simulation studies using multilevel physics models", 
Phys. Plasmas, vol. 6, p. 1796, May 1999. 

[6] J. Cummings et al., "Plasma Edge Kinetic-MHD Modeling in 
Tokamaks Using Kepler Workflow for Code Coupling, Data 
Management and Visualization", Commun. Comput. Phys., vol. 4(3), pp. 
675-702, September 2008. 

[7] S. Klasky et al., "Adaptive IO System", Proceedings of the 50th Cray 
User Group meeting (CUG 2008), Helsinki, Finland, May 2008. 

[8] J. Lofstead, S. Klasky, M. Booth, H. Abbasi, F. Zheng, M. Wolf and K. 
Schwan, "Petascale IO using the Adaptable IO System", Proceedings of 
the 51st Cray User Group meeting (CUG 2009), Atlanta, GA, May 2009. 

[9] J. Lofstead, F. Zheng, S. Klasky and K. Schwan, "Adaptable, Metadata 
Rich IO Methods for Portable High Performance IO", Proceedings of the 
23rd IEEE International Parallel & Distributed Processing Symposium 
(IPDPS 2009), Rome, Italy, May 2009. 

[10] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan and M. Wolf, 
"Extending I/O through High Performance Data Services", to appear at 
Cluster Computing 2009, New Orleans, LA, August 2009. 

[11] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and C. Jin, "Flexible 
IO and Integration for Scientific Codes through the Adaptable IO 
System (ADIOS)", Proceedings of the 6th ACM/IEEE International 
Workshop on Challenges of Large Applications in Distributed 
Environments (CLADE 2008), Boston, MA, June 2008. 

[12] C. Docan, M. Parashar and S. Klasky, "DART: A Substrate for High 
Speed Asynchronous Data IO", Proceedings of the 17th IEEE 
Symposium on High Performance Distributed Computing (HPDC 2008), 
Boston, MA, June 2008. 

[13] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, 
E. A. Lee, J. Tao and Y. Zhao, “Scientific Workflow Management and 
the Kepler System”, Concurrency and Computation: Practice & 
Experience, vol. 18(10), p. 1039, August 2006. 

[14] N. Podhorszki and S. Klasky,”Workflows in a secure environment”, 
Proceedings of the 7th International Conference on Distributed and 
Parallel Systems (DAPSYS 2008), Debrecen, Hungary, September 2008. 

[15] J. Allaire, "Macromedia Flash MX -- A next-generation rich client", 
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf, 
March 2002. 

[16] R. Barreto, S. Klasky, N. Podhorszki, P. Mouallem and M. Vouk, 
“Collaboration Portal for Petascale Simulations”, Proceedings of the 
2009 International Symposium on Collaborative Technologies and 
Systems (CTS 2009), Baltimore, MD, May 2009.  

[17] P. Mouallem, R. Barreto, S. Klasky, N. Podhorszki and M. Vouk, 
“Tracking Files in the Kepler Provenance Framework”, Proceedings of 
the 21st International Conference on Scientific and Statistical Database 
Management (SSDBM 2009), New Orleans, LA, June 2009 [Lecture 
Notes in Computer Science, vol.  5566, Springer, 2009, pp. 273-282].  

[18] A. Shoshani, A. Sim and J. Gu, "Storage Resource Managers: Essential 
Components for the Grid", in Grid Resource Management: State of the 
Art and Future Trends, J. Nabrzyski, J. M. Schopf and J. Weglarz, Eds., 
Kluwer Academic Publishers, 2003. 
 

 

 


	I.  Introduction
	Leadership Class Computing and EFFIS
	A. Description of Leadership Class Computing Facilities
	B. Brief Description of EFFIS

	III. Code Coupling for the Pedestal-ELM Cycle
	IV. ADIOS
	A. Overview of I/O Challenges and ADIOS Architecture
	B. ADIOS Performance
	C. DataSpaces framework

	V. Workflows for Monitoring and Data Movement
	VI. Dashboard
	A. Technologies and Key Features
	B. Wide Area Data Movement

	VII. Conclusions
	Acknowledgments
	References


