
Plasma fusion code coupling using scalable I/O services
and scientific workflows

Norbert Podhorszki, Scott Klasky, Qing Liu
Oak Ridge National Laboratory

Oak Ridge, TN, 3738, USA
{pnorbert,klasky}@ornl.gov

Hasan Abbasi Jay Lofstead, Karsten Schwan,
Matthew Wolf and Fang Zheng

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, USA
{habbasi,lofstead,schwan,mwolf,fzheng}@

cc.gatech.edu

Ciprian Docan and Manish Parashar
Center for Autonomic Computing

Rutgers University,Piscataway, NJ 08854, USA
{parashar,docan}@cac.rutgers.edu

Julian Cummings
Center for Advanced Computing Research

California Institute of Technology
Pasadena, CA 91125, USA

cummings@cacr.caltech.edu

ABSTRACT

In order to understand the complex physics of mother nature,
physicist often use many approximations to understand one area
of physics and then write a simulation to reduce these equations to
ones that can be solved on a computer. Different approximations
lead to different equations that model different physics, which can
often lead to a completely different simulation code. As
computers become more powerful, scientists can either write one
simulation that models all of the physics or they produce several
codes each for different portions of the physics and then ‘couple’
these codes together. In this paper, we concentrate on the latter,
where we look at our code coupling approach for modeling a full
device fusion reactor. There are many approaches to code
coupling. Our first approach was using Kepler workflows to
loosely couple three codes via files (memory-to-disk-to-memory
coupling). This paper describes our new approach moving
towards using memory-to-memory data exchange to allow for a
tighter coupling. Our approach focuses on a method which brings
together scientific workflows along with staging I/O methods for
code coupling. Staging methods use additional compute nodes to
perform additional tasks such as data analysis, visualization, and
NxM transfers for code coupling. In order to transparently allow
application scientist to switch from memory to memory coupling
to memory to disk to memory coupling, we have been developing
a framework that can switch between these two I/O methods and
then automate other workflow tasks. Our hybrid approach allows
application scientist to easily switch between in-memory coupling
and file-based coupling on-the-fly, which aids debugging these
complex configurations.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Physics

General Terms
Performance, Design, Experimentation.

Keywords
Parallel I/O, workflow design, workflow execution, code
coupling, plasma simulation.

1. INTRODUCTION
One of the goals of modeling complex phenomena, such as in the
Fusion Simulation [1] is to couple codes, which are either legacy
codes, or on-going research in their own domain. The complexity
of coupling codes in this project are that some require loose
coupling strategies and some require tight coupling. Our
motivating example is shown in Figure 1, where we are trying to
couple two fusion simulation codes, the GTC [2] and XGC [3]
codes for core-edge coupling in a fusion reactor. They both
calculate with billions or trillions of individual particles so, in this
example, there will be frequent coupling of large amounts of data
from large number of processors. In this example, each code
separately runs on over 20K processor cores and the amount of
data that can be exchanged, as field information, can be well over
1 GB of data, which needs to be exchanged every timestep of the
calculation. A timestep may be completed as frequently as every
second. Clearly, this operation will stress most file systems since
the overhead of writing and then reading from disk can be almost
a second on most systems. The approach taken is to couple the
data in memory using a shared space abstraction [4]. We want a
workflow to monitor the minimum and maximum values of the
variables being passed between the codes. By transferring this
provenance information over from the coupled simulation to the
workflow engine, we allow the workflow to understand what is
happening in the simulation and act on some special conditions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Works’09, Nov 16, 2009, Portland, OR, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

A typical scenario is the following: the maximum value of one of
the variables grows greater than some acceptable value during the
code coupling. The application scientists then want the ability to
transparently switch from memory-to-memory to memory-to-
memory and disk so they can monitor the data. By transparently
allowing this to occur in the I/O layer of the simulation, the
workflow monitoring system can start seeing files being
generated, and transfer the file(s) over to another computer
system, and then run a series of analysis and visualization tasks.
The generated images are accessible on our dashboard [5], a web
portal, where the scientist can see the results and then kill the
simulation if the results look bad, otherwise let the workflow turn
off the memory-to-disk portion of the I/O to allow the coupled
simulation to return back to full speed using only memory-to-
memory coupling.

Figure 1. Coupling GTC and XGC for core-edge simulation
using ADIOS and DataSpaces. A Kepler workflow monitors

the coupling.
Our approach to code coupling is to extend the ADIOS
componentized I/O framework [6], described in section 3.1, to
support in-memory coupling by switching the transport method
from I/O to in-memory coupling. ADIOS allows for I/O
multiplexing, where multiple methods can be used
simultaneously. For example if a user and/or a workflow actor
detects that data should be written to disk as well as moved in
memory to another component, it can simultaneously switch
ADIOS to do both, allowing for an easy-to-use system for
coupling codes together on a single platform or on different
platforms and allow the system to automatically switch from
memory-to-memory over to memory-to-disk. This gives users the
flexibility to switch between these two I/O methods when they are
in the process of debugging the system or when new physics is
added into the codes. It also allows users to save to disk both the
provenance information from the data that is being exchanged
from the codes as well as the actual data being exchanged.

In this paper we present the components that enable us to realize
the vision above. The provenance framework in Kepler [7] allows
us to record information from the simulation in the I/O pipeline.
The use of provenance in our existing fusion framework is
discussed in section 2. Section 3 presents trends in scalable I/O
research. In Section 4 we show how the simulation I/O is
connected to the Kepler workflow directly via a new ADIOS
method and discuss the events observed in the workflow.
Subsection 4.3 discusses different applications of this technique

and includes a description of an already existing fusion code
coupling application and the effects on the workflow
implementations by going from disk-based coupling to memory-
to-memory coupling.

1.1 Related work
There are two pieces of related work. The Argonne Model
Coupling Toolkit (MCT) is a framework that facilitates model
coupling between model components in the Common Community
Climate System Model (CCSM). MCT uses a flux coupler to
transfer data between physics simulation components. In this
approach, message exchange schedules cannot be changed
dynamically since they are hard-coded in the source codes. Load
balancing is also hard-coded in the source and is performed
explicitly in MCT. In order to couple the Weather Research &
Forecasting (WRF) model to the Regional Ocean Model System
to study hurricanes1, they combined the WRF I/O with the MCT
coupling infrastructure2. This coupling system is designed for data
exchange between moderately sized codes running on separate
Grid resources, but it can have scalability issues and was not made
to be integrated with a scientific workflow system.
The Distributed Data Broker (DDB) project [8] also targets the
problem of code coupling, but has a different approach than ours.
DDB uses a central resource, i.e., a broker, to gather global
information about the data distribution of the coupled
applications, and to compute required communication schedules
between the applications. Data coupling is formulated using the
producer-consumer pattern, where the producer uses the pre-
computed communication schedules to send data to the consumer.
While this is an elegant distributed solution, it assumes predefined
and static coupling behaviors, imposes tight synchronization
requirements, and implicitly assumes that the end applications can
directly communicate with each other.

2. FUSION WORKFLOWS FOR CPES
The Center for Plasma Edge Simulation (CPES) project aims to
develop an integrated and predictive plasma edge simulation
package [1] applicable to existing magnetic fusion devices and
future burning plasma experiments like ITER (the
International Thermonuclear Experimental Reactor). The compu-
ter science participants of the project are developing the End-to-
end Framework for Fusion Integrated Simulation, or EFFIS [9],
which addresses all the challenges that code coupling and multi-
institutional collaboration of physicist, applied mathematicians
and computer scientists face: massive data I/O, data exchange
between codes, coordination of code activities/executions, post-
processing, archiving, and a collaborative portal for analysis. In
this project, we selected Kepler for constructing workflows and
extended Kepler for these purposes in [10]. We use Kepler to
coordinate code coupling, transfer data for exchange between
codes, and to visualize the diagnostic output of each code on the
fly so that an application scientist can monitor the progress of the
simulation from a web browser. A file-based coupling workflow
for the kinetic and MHD codes was described in detail in [11].
Another workflow, described in [12], to monitor XGC1
simulations of micro-turbulence in the plasma edge has been
extensively used for hundreds of simulations. Similar monitoring

1 http://nctr-people.pmel.noaa.gov/cmoore/wrf-roms/index.html
2 http://www-ad.fsl.noaa.gov/ac/schaffer/mct_wrf_io_api.html

workflows have been built for core turbulence simulations in
other projects for GTC, GEM and PIXIE3D based on this
workflow. The GTC and XGC1 monitoring workflows are
incorporated into of the XGC-GTC coupling workflow.

2.1 Provenance recording from source code to
movies
Application scientists need to analyze and visualize data produced
by simulations to gain knowledge from the simulations. Both run-
time and post analysis require additional meta-data or provenance
information to track what data is used to create a visualization or
analysis result and what operation(s) were applied to it.
Provenance recording is the key to enabling the dashboard to hide
the details from the users allowing them to focus on the scientific
variables instead of keeping track of the thousands of files that
may be generated from one simulation run. The Scientific Process
Automation group (SPA) of the DOE Scientific Data Management
Center (SDM) developed the Kepler provenance framework [13]
that we use in EFFIS to record and retrieve the data lineage. For
example, if a user wants to execute an analysis job on the
dashboard, the user selects which variables to include in the
analysis and executes the analysis without knowledge about the
actual location and names of the files [5]. Data for analysis is
selected by the user as a movie or a frame of the movie. Data
lineage information is used to discover what image is behind that
frame and what data file(s) were used to produce that image. Then
the analysis job is executed on that data. In a similar fashion, the
user might want modifications to the visualization shown on the
dashboard and can run new visualizations based on the variables,
not on the files. Here the dashboard has to determine what data
file and what image creation method was used so that it can rerun
that method with the new options.

The workflow also records the system environment information
including: the name of the computer where the simulation code
was built, the list of libraries and versions used, and the source
code of the simulation. After a simulation, the user can review the
simulation source files and environment for the application
including the source code of the analysis routines. Similarly, the
environment in which the code was built can be reviewed.
The Kepler provenance framework records all details about all of
the entities in a workflow application, which becomes a large
amount of collected meta-data when running workflows. Since
these workflows are complex, we had to add several mechanisms
for mining the provenance data to track files that exist on disk as
well as files that have been archived by the workflow. The
recording of provenance information and the algorithms to track
the provenance for the dashboard use is described in detail in [14].

3. SCALABLE I/O TRENDS
High Performance Computing (HPC) systems continue to grow in
size and complexity. As the systems grow in size, they increase
both their aggregate memory and their overall computational
power. For example, the recent additions to the Cray-XT5
computer at ORNL have increased the number of processors
(cores) to almost 150K cores from 30K cores and it has over 300
TB of memory. In order to write data efficiently, the I/O system
was upgraded from 60GB/s to over 220 GB/s. Although these
numbers sound outstanding, the ‘actual’ real-world performance
can be orders of magnitude less than these results. The I/O system
contains thousands of disks. In order to obtain optimal I/O
performance, one must be able to use all of the disks to gain

maximum parallelism in the I/O system. Furthermore, complex
file formats like NetCDF and HDF5, which require writes to be in
a contiguous logical format, can stress the shared network on Cray
XT and Infiniband architectures. This often causes poor parallel
I/O performance as shown in our previous research [16].
Researchers are also forced into making difficult coding decisions
to use either complex APIs or simple I/O in binary or ASCII
format lacking metadata. These decisions often force them into
using non-optimal I/O practices when porting their code to new
architectures and may even render the I/O useless.

There are different directions in I/O research to overcome this
problem and provide optimal tools for all I/O scenarios code
developers face. Our solution is to use ADIOS, which can make
coding I/O easy (easy to use APIs) yet provides ways to choose
the best performing methods to write data out without modifying
the source code of the simulation. DataSpaces is one ADIOS
method, described in 3.1, which allows the exchange of data
between two codes running on the same computer through
memory avoiding file I/O. Staging and in-line processing can
further improve the I/O performance when writing files or
perform additional operations on the data being exchanged
between two codes. These developments are described in the
following subsections.

3.1 ADIOS
The ADaptable I/O System, (ADIOS) is a componentization of
the I/O layer. It provides an easy-to-use programming interface,
which can be as simple as FORTRAN file I/O statements. ADIOS
abstracts I/O metadata information and data structures from the
source code into an external XML file reducing code pollution
and creating the connection between high-level APIs and
underlying I/O implementation details, such as buffering and
scheduling. By separating the detailed I/O implementation from
the APIs, ADIOS also allows users to simply change the
declaration of the I/O methods in the XML file without any source
code modification.

Some of the key features of ADIOS are that it allows for
extremely fast I/O [15], has a high level of resiliency [16], and can
be used for creating multiple operations in I/O staging [17].
ADIOS can also be used to select different methods, at or during
runtime, for coupling codes together, in memory, as well as file-
based coupling. By using the provenance capturing method [18],
ADIOS can capture the provenance information in both cases,
without changing the codes or the workflow.

ADIOS development has initially concentrated on write
performance. In Figure 2 below, twenty GTC code runs measured
twice with two different actual I/O methods are shown. We show
that we can achieve 70 GB/s when writing data on the Cray XT-5
at ORNL. This level of performance allows researchers to write
metadata-rich data, in the ADIOS-BP format.

Our reading performance of ADIOS-BP files on the Cray XT-4 at
ORNL has also been able to get excellent performance. In
Figure 3, we read in 62 GB data from BP files written from a
GTC run on 32K cores. We see that it takes approximately 2
seconds to read in this file from a reasonable number of cores.

Since ADIOS is an I/O componentization that allows users to
switch the I/O methods during runtime, we argue that combining
this with provenance capturing methods, in situ visualization
methods, and code coupling methods, ADIOS can be used as a
general framework to couple fusion codes together.

Figure 2. ADIOS write performance. Two I/O methods are

shown here with 20 GTC test runs each.

Figure 3. ADIOS read performance for GTC data. Using

enough processors to read, over 30GB/sec data rate can be
achieved.

3.2 DataSpaces: memory-to-memory data
exchange
DataSpaces is an advanced coordination and interaction
framework to provide the abstractions and mechanisms to support
flexible and dynamic inter-application collaboration at runtime. It
builds on ADIOS, specifically the DART [19] asynchronous data
transport method provided by ADIOS. DART uses RDMA
(Remote Direct Memory Access) provided by advanced
communication technologies and is optimized for fast,
asynchronous data transfers with low latency and small
overheads. Furthermore, it enables direct memory-to-memory
communication between the nodes of distinct applications through
RDMA. DART is particularly suited for high performance
applications as it enables the overlap of computations and
communication allowing better utilization of the computing
resources.
DataSpaces provides the abstraction of a virtual semantically-
specialized shared space that can be asynchronously and flexibly
accessed using simple yet powerful operators (e.g., put() and
get()) with appropriate selectors. These operators are agnostic of
the location, source/destination, the distribution of the data, and

the interacting application components. It also supports “in-the-
space” manipulation and/or reduction of data using pre-defined
and user-defined functions, as well as abstractions for data
subscriptions and notifications. In our ADIOS implementation of
DataSpaces, we use the I/O interface (write, read) to allow RDMA
operations (put, get) without changing the source code. This
enables users to easily switch from the DataSpace method to an
I/O method such as MPI I/O.

The DataSpaces architecture is composed of three key layers:
communications layer, directory layer, and the storage layer. The
communications layer builds on DART and extends its
communication and data transport capabilities to support control
and data message exchange. It also adds support for node
discovery, registration and notification.

The directory layer provides the coordination capabilities and
tracks data sources, sinks and distributions. It enables applications
to insert, query and retrieve data from peer nodes in the space. It
is implemented as a semantically enhanced distributed hash table
(DHT), which is dynamically distributed across the nodes that are
part of the space to provide load balancing when data is inserted
in the space and enables efficient look-ups when data is retrieved
from the space. It supports subscribe/notification mechanisms and
autonomic cleanup when data is no longer referenced.

The storage layer hosts the actual data being shared among the
applications (i.e., the objects put into the space). This layer
implements a coherency protocol, which defines and determines
the interactions of an object with the space. For example, the
protocol defines and determines when an object can be inserted,
updated, destroyed or removed from the space. This layer also
preserves data integrity when multiple application nodes access
the data simultaneously.
An initial prototype of DataSpaces has been implemented and
deployed on the Jaguar Cray XT5 system at Oak Ridge National
Laboratory and is being used to support coupled fusion simula-
tions as part of the CPES project. DataSpaces provides
asynchronous coupling capabilities allowing the coupled applica-
tion codes to progress independently at different rates and to ex-
change data at runtime without making any assumptions about the
frequencies of interactions or the relative execution speeds of the
codes or forcing synchronizations. Initial evaluations have
demonstrated the performance benefits as well as the flexibility of
DataSpaces.

3.3 Staging area and in-line data processing
Asynchronous I/O combined with extra compute nodes as a
staging area can further improve the performance of the I/O and
decrease the latency of I/O in the application. Asynchronous data
transport methods such as DataTap [17] and DART [19] for
ADIOS have been tested with the GTC and XGC1. Using these
methods, data from the 10k+ cores of the simulation is not
streamed directly towards the file system, but to the staging nodes
(see Figure 4). The processes on the staging nodes can use another
ADIOS I/O method to write to a file in parallel (like the MPI-IO
method to write ADIOS-BP file(s) or the pHDF5 method to write
directly an HDF5 formatted file).

In [17], we extend the idea to perform data analytics in the staging
nodes. Operations like data reduction (without loss of scientific
validity), compression, indexing for fast data access, and
lightweight diagnostic calculation for monitoring the health of the
simulation can be placed inside the staging area. As Figure 1

shows, interpolation of the data from the mesh used in GTC to the
mesh XGC1 is necessary to couple the two codes. The
interpolation can either be executed within one of the codes as an
extra step when the exchange is performed or in the staging area
itself. The abstract design of Data Services in [17] allows one to
put the extra manipulation process into the staging area.

Figure 4. Using staging-nodes to gather data before writing to

disk. CN denotes a compute node of the supercomputer
Another useful operation for GTC is sorting of the particle data
before it is written to disk. The particle simulation code is
calculating with billions of particles (ions and electrons). Each
particle has an id, which can be used to trace the movement of the
particle. Sorting is necessary when to visualize or analyze a subset
of the data on a handful of processors. This allows reading only a
small subset of particles for each timestep instead of browsing
through large files searching for them. The particle count of 2-8
billion in today’s GTC runs mean 64-256 GB files per timestep,
and there are 100-1000 write-out timesteps.

4. COMMUNICATION OF I/O SERVICE
AND THE WORKFLOW SYSTEM
4.1 Connection from ADIOS to Kepler
The activities of the I/O components can be reported to the
workflow so that it can record them and make decisions on what
to do. The I/O routines are part of the simulation executable and
are running on computational nodes of a supercomputer. These
nodes can only communicate with the outside world via the file
system and the front-end nodes of the supercomputer through
sockets. In our approach, we establish a two-way communication
between the I/O component and the workflow. The
communication goes through a front-end node of the
supercomputer.

The workflow runs on a separate system and is connected to a
front-end node of the supercomputer to watch the output
directories of the simulation and initiate the data transfers in
current workflows. Since the workflow is connected to a front-end
node with an SSH connection, we implement the connection by an
indirect socket connection between the simulation and the
workflow utilizing the remote port forwarding mechanism
provided by the SSH server, see Figure 5. We have added support
for port forwarding to the org.kepler.ssh3 package of Kepler so
when an SSH session is established to a resource, a list of remote
ports and local ports can be supplied to be connected through the

3 svn repository: https://code.kepler-project.org/code/

kepler/trunk/modules/util/src/org/kepler/ssh

virtual SSH tunnel. Kepler actors using this package can listen on
one of the local socket ports and receive data from entities that
connect to the corresponding remote port on the connected
resource. All communication on that remote port is forwarded by
the connected SSH server back and forth. This is physically
implemented as a separate user level process on the remote
machine, which forwards the communication.

Since ADIOS allows the simulation to utilize two or more
transport methods for the same data, we created a separate method
for the purpose of communicating with the workflow instead of
modifying all of the existing methods and requiring this of any
new transport method. This new method, named adios-
provenance, reports the metadata through a socket connection.
Working independently from the actual I/O method in the
simulation, this method notifies a workflow of the I/O activities in
the same form no matter if the other method writes the data into a
file or passes it through a staging area to be consumed by a
coupled code. Since the metadata, or index, of the data is small, it
is gathered on one processor of the application and the connection
is established only between this processor and Kepler.

Figure 5. Socket connection from ADIOS I/O component to
the remote Kepler workflow. FE denotes a front-end node.

4.2 Information exchanged between the I/O
and the workflow
We are interested in the following I/O events in Kepler:

- Write. File “foo” is created/ updated.
- Method. Which ADIOS method is used for I/O.

- Variable. A single variable is written. It includes simple
statistics of the variable.

- Terminate. Simulation terminated.
When the simulation writes out data of a completed calculation
cycle (timestep), the workflow should react immediately and grab
the data for post-processing. This means that the workflow must
know when the file is actually completed writing, not just opened
for writing. In the ADIOS API, an open() call opens the file,
followed by a series of write() calls of individual variables that
are buffered, assuming sufficient memory is available, and is
terminated by a close() call in each timestep. The data actually
starts being written to disk by ADIOS at the close() call so that
it can achieve the best possible I/O performance by writing one
large buffer to disk. The only exception to the buffering is if I/O
streaming starts earlier or if the available buffer fills. The
workflow is only interested in the fact that data has been written

out, so the write event should be sent by the close() call. Note
that in ADIOS the close() method is used at each timestep to
initiate streaming the data buffer onto disk.
With memory-to-memory methods used for coupling two codes,
foo is not a file on disk. If the workflow is going out to grab the
data in case of a Write event, it fails to find it. Therefore it needs
to know the actual I/O method used by ADIOS to decide if it can
process a file or just record the provenance of the I/O activity.
This information is available during the close() call and is sent
too as a Method event.

If more information is needed about what was written, the
Variable event describes the variable name, type, size, associated
constant attributes and dynamically calculated characteristics, like
min/max. The workflow would need this information if it were
monitoring a variable and should react if the minimum or
maximum value during a timestep exceeds a threshold. ADIOS
knows all this information during the write() calls. Since the
variable is generally not written directly into the file during the
write() call, this information is sent from the close() call too.

The termination of the simulation is not directly recognized by
ADIOS. However, it has initialize() and finalize()
methods, much like parallel libraries like MPI. When
finalize() is called, the simulation indicates that there will be
no more data produced by any method. This function calls each
I/O method that was used during the run to release all resources
they might still use. The adios-provenance method sends this
single Terminate event out on the socket connection signaling the
workflow that no more events will come from this simulation.

The extra work of index interpretation and transformation to text
in the I/O component itself slowing down one of the simulation
processes is undesirable. In the prototype implementation,
therefore, the binary form of the metadata (variable indices and
data characteristics) intended to be written as a data block into a
file, is sent out by the adios-provenance method within the
simulation process. Therefore, the above events of interest are
generated from the binary index data at the receiver end, i.e. in
Kepler. All the Write, Method and Variable events can be
generated at the same time from this data when it is received from
the simulation. The Stop event is sent by the I/O layer separately
in the finalize() method.

4.3 Applications of the I/O-workflow
communication
4.3.1 Watching simulation output without polling
The current monitoring workflows, when watching simulations to
grab newly generated data, are doing intrusive polling for new
files by regularly listing the simulation directory with the
SSH Directory Listing actor [10]. On parallel file-systems, the
“ls -l” command to list the file names, sizes and date information
is an expensive operation that can slow down simulations by
accessing the metadata server and individual storage nodes of the
file system to gather all information for the potentially large
number of files in that directory. This can negatively impact all of
the simulations running on the supercomputer when the workflow
is running. By delivering the simulation I/O events to the
workflow directly when they occur, the workflow can react faster
and watch the simulation without a single query on the file
system. The only information needed from the metadata is the
name of the file(s) created or updated by the simulation (through

the Write events). Similarly to the listing actor, the downstream
pipeline can be fed with the names of files. Thus, only the listing
actor is replaced with the new actor in the existing workflows to
accomplish the polling free monitoring.

4.3.2 Provenance recording of variables not saved in
files
One consequence of in-memory coupling of different codes is that
the information exchange is not recorded in files. This prevents an
external observer from seeing what is happening or performing
additional operations on data, if needed. Using ADIOS in the
coupling communications, simple characteristics (dimensions,
max, min) of the variables being passed between the coupled
codes are sent to the workflow engine. The workflow watches the
characteristics along with the communication activities of the
coupled codes through the Variable events so that certain events
can be triggered.

The basic action for the workflow is to make a visualization of the
values it receives from the simulation. If, phirms, the root mean
square of the phi variable is watched to make decisions in the
workflow, it generates a “phi root mean square” plot on the
dashboard like the one in Figure 6. The data analysis scenario of
Section 2.1 then applies to this plot too with the exception that
there is no file behind the plot to be found by the provenance
framework. Later, the scientist may want to select data of the phi
variable saved in files for the timesteps when the value of phirms
was a certain value and run analysis on that subset of phi data.
Provenance recording of the workflow activities helps performing
this selection automatically. The relationship between the phirms
values and the plot is given by the data lineage. The provenance
framework records the input token of the plotting actor, which
contains the phirms value as well as the output token, which
contains the image file name. The provenance database must be
queried for all executions of the plotting actor to gather the input
values to those actor executions, getting the phirms values over
the whole time series.

Figure 6. The root mean square of the phi variable in GTC is
a plot of single values over time (i.e., an image file). Can you
answer the question “In what timesteps was the value greater

than M?” programmatically?

4.3.3 XGC-M3D coupling with stability checking
The CPES Full-ELM coupling application [11] enables physicists
to study the dynamic interaction of kinetic effects that cause a
buildup of the edge pedestal in plasma density and temperature
profiles and large bootstrap currents with Edge Localized Modes
(ELMs) that may limit pedestal growth and tokamak reactor

performance. Three different fusion codes are used in this coupled
simulation as shown in Figure 7. XGC0 [3] reads in at the
beginning a so-called equilibrium data file (g-eqdsk) related to the
simulated fusion device and the physical experiment of interest
(analytic profiles for the edge plasma density, temperature and
magnetic equilibrium data). A shared-memory version of the
M3D code [20], M3D-OMP is used to update this equilibrium
data during the simulation, using the XGC0 status stored in a file
named m3d.in. The refined g-eqdsk data is then read in by XGC0
to maintain self-consistency. To check the linear MHD stability of
XGC0, a third code, ELITE [21] is executed in a parameter
sweep. The edge plasma density data (p-eqdsk) from XGC0 is
needed in addition to the g-eqdsk data for an ELITE run. When
some ELITE steps in the parameter sweep finds XGC0 unstable,
the XGC0 kinetic model must be stopped and a nonlinear
simulation of the ELM using the parallel M3D-MPP code
launched. This will eventually recover a modified equilibrium
from this simulation that can be used to begin a new XGC0 run
that will start the cycle over again.

Figure 7. Schematic of full-ELM coupling

In the first implementation of the coupling, presented in [11], a
Kepler workflow orchestrates all code executions where the data
exchange is performed via files (see Figure 8). The workflow
discovers whenever XGC0 creates a new output (m3d.in and
p-eqdsk), and then it submits an M3D-OMP job with the current
m3d.in and g-eqdsk data. When M3D-OMP is finished, the
workflow prepares a parameter sweep of ELITE jobs for which it
copies the p-eqdsk data from XGC0 and the corresponding
g-eqdsk data produced by M3D-OMP. The workflow also
transfers the updated g-edqsk file back to XGC0. When the code
becomes unstable, the workflow kills XGC0 and submits an
M3D-MPP job after interpolating XGC0 data for its input using
M3D-OMP. Besides the coupling orchestration, the workflow
continuously monitors the codes for their output and creates
images from them. The codes happen to use different file formats
(NetCDF, HDF5, ADIOS BP format and text files) and the
workflow is using different tools (xmgrace, AVS, gnuplot and
IDL) to produce the visualizations shown in Figure 9. These
images, updated as new data becomes available, show the status
and progress of the coupled simulation.

In the second implementation, presented in [22], XGC0 and M3D-
OMP are tightly coupled via memory-to-memory communication

using ADIOS and DataSpaces. Data once written into m3d.in and
g-eqdsk files are now exchanged via I/O services as illustrated in
Figure 10. The implementation consists of a client component that
is integrated with the two application codes and allows for
dynamic data exchange at run time, and a space component that
runs on a cloud of “staging nodes”, which are dedicated for the
space and independent of the application nodes. The DataSpaces
client on the XGC0 application inserts plasma profile data objects
in the shared space and the DataSpaces client on the M3D-OMP
application extracts and passes them to the application. In the next
step, the DataSpaces client on the M3D code inserts MHD
equilibrium data objects back in the space and the DataSpaces
client on the XGC0 extracts and passes them to the application.

Figure 8. Kepler workflow of file-based Full-ELM coupling

Figure 9. Images generated by the workflow from the data of

the different codes participating in the coupled simulation
The tighter coupling of XGC0 and M3D-OMP enables the
equilibrium update to be performed more often while the stability
checking still takes the same time as with the first
implementation. The frequencies of these two steps are now
separated. The ELITE coupling is still performed by the workflow
therefore XGC0 still generates a p-eqdsk file at regular intervals
while M3D-OMP writes the g-eqdsk data to a file too besides
putting it to the DataSpaces. The difference between the two
workflow implementations is little compared to their complexity.
The original workflow watches for m3d.in files (i.e., watches
XGC) and executes M3D-OMP as a job to get the g-eqdsk file and

then it takes the corresponding p-eqdsk file to run the ELITE jobs.
The second workflow watches for the g-eqdsk files to appear on
disk (i.e. watches M3D-OMP). However, this workflow could be
implemented very similar to the first one. It would watch for the
event that corresponds to the writing of the m3d.in to a file in the
first implementation, which is the Write event of m3d.in from
XGC. On such event, instead of executing M3D-OMP, it would
just wait for the Write event of g-eqdsk file from M3D-OMP.
Besides this, the workflows are identical in all steps.

Figure 10. XG0-M3D coupling using DataSpaces framework

The Method event allows a workflow to know which transport
method was actually used, i.e. to know if XGC is coupled to
M3D-OMP memory-to-memory or the workflow is expected to
run M3D-OMP. We can thus build a single coupling workflow,
where a logical branch, see Figure 11, within the “M3D-OMP”
step handles the different workflow behaviors in the two coupling
cases but otherwise everything is the same as in the original
workflow.

Figure 11. M3D-OMP step (composite actor in Kepler) in the
combined workflow. Either M3D-OMP is executed with files

as input, or the workflow waits until the tightly coupled M3D-
OMP signals the completion with a “Write g-eqdsk” event.

Since ADIOS is designed to allow changing the I/O method
during the simulation, we can enable the workflow to talk directly
to ADIOS to switch the I/O method. These techniques together
enable us to design coupling scenarios where the workflow can
turn on and off a tight coupling and replace it with a slower, file-
based coupling, but perform additional operations if some
conditions are observed.

5. CONCLUSION AND FUTURE WORK
This paper presents our vision of coupling two large fusion
simulation codes with memory-to-memory coupling while
monitoring the data exchange in a workflow by connecting the
code(s) to the workflow via the I/O library used in the simulation
to exchange data. The workflow can change from memory-to-

memory coupling to a file-based coupling and back to perform
additional analysis on the data, if needed. We use the ADIOS
componentized I/O library for the communication, which allows
for using multiple I/O methods behind a single I/O function call in
the simulation. A new method, adios-provenance was created to
send metadata about the exchanged data to the Kepler workflow.
The connection is currently implemented by an indirect socket
connection from the Kepler workflow engine to one of the
processes of the simulation utilizing the port forwarding
mechanism of ssh servers. The gathering of the metadata allows
us to produce image plots on observed variables without them
being written to files; to build a workflow that orchestrates and
monitors a coupling application with different coupling methods;
even change from memory-to-memory coupling to a file-based
coupling during a coupled run so that additional analysis can be
performed on the data being exchanged; or simply just watch for
the output data of a simulation for post-processing without polling
the output directory of the simulation.

There are some disadvantages of the direct connection of the
simulation and the workflow. In our framework, simulations are
submitted by the coupling workflow. The workflow establishes
the connection to the supercomputer front-end before the
simulation starts so the port information can be a parameter for
the simulation. However, in the case of monitoring workflows, the
workflow is started later to monitor an independently submitted
simulation so the I/O service regularly needs to perform a
discovery procedure to find the port as long as the workflow
establishes the SSH connection to the front-end node and creates
the forwarded port. Events occurring before the connection is
established, or between a disconnection and reconnection in case
of a failure, should be temporarily stored somewhere. Another
disadvantage of our prototype is that the binary form of the
metadata emitted by the ADIOS method within the simulation
process should be processed in the Java environment of Kepler. A
more general framework can be designed so that events of interest
are generated from the index binary data and put into a database
via some kind of service accessible from the simulation. Then
Kepler or some other system could subscribe to the service to
receive events from the observed simulation. However, since we
want control from the workflow to possibly change the I/O
method in the simulation on the fly, we need to design a
decoupled way to access the simulation’s I/O layer from the
workflow, which is straightforward with the direct connection we
have now.

6. ACKNOWLEDGMENTS
This work is part of the ongoing research activities within the
Center for Plasma Edge Simulation (CPES), a SciDAC Fusion
Simulation Prototype center that is supported by the Office of
Fusion Energy Sciences and the Office of Advanced Scientific
Computing Research within the US Department of Energy. We
are grateful to the National Center for Computational Science at
Oak Ridge National Laboratory for access to and support of their
computing resources. We thank to the Scientific Data
Management (SDM) Center, another SciDAC center, which
supports the development of Kepler and developed the Kepler
Provenance Framework. We thank Zhihong Lin and Yong Xiao,
in the GPSC and GSEP projects, and Michael Booth from Sun
Microsystems.

7. REFERENCES
[1] C.S.Chang et al. “Toward a first-principles integrated

simulation of tokamak edge plasmas“,
Journal of Physics: Conf. Ser. 125 012042 (7pp)

[2] Z. Lin, S. Ethier, T.S. Hahm and W.M. Tang, “Size Scaling
of Turbulent Transport in Magnetically Confined Plasmas”,
Phys. Rev. Lett. vol. 88, no. 19, p. 195004, Apr. 2002

[3] C. S. Chang, S. Ku and H. Weitzner, "Numerical study of
neoclassical plasma pedestal in a tokamak geometry", Phys.
Plasmas, vol. 11, p. 2649, May 2004.

[4] L.Zhang, M.Parashar, "A Dynamic Geometry-based Shared
Space Interaction Framework for Parallel Scientific
Applications", Proceedings of the 11th Annual International
Conference on High Performance Computing (HiPC 2004) ,
Bangalore, India, December 2004

[5] R. Barreto, S. Klasky, N. Podhorszki, P. Mouallem and
M. Vouk, “Collaboration Portal for Petascale Simulations”.
2009 International Symposium on Collaborative
Technologies and Systems, (CTS 2009), pp. 384-393,
Baltimore, Maryland, USA, May 2009.

[6] S. Klasky et al., "Adaptive IO System", Proceedings of the
50th Cray User Group meeting (CUG 2008), Helsinki,
Finland, May 2008.

[7] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao and Y. Zhao, “Scientific
Workflow Management and the Kepler System”,
Concurrency and Computation: Practice & Experience, vol.
18(10), p. 1039, August 2006.

[8] L. A. Drummond, J. Demmel, C. R. Mechoso, H. Robinson
and K. Sklower and J. A. Spahr. "A Data Broker for
Distributed Computing Environments". In Lecture Notes in
Computer Science. Volume 2073/2001, pp. 31-40, January
2001.

[9] J. Cummings et al. “EFFIS: an End-to-end Framework for
Fusion Integrated Simulation”, submitted to PDP 2010, Pisa,
Italy, February 2010

[10] N. Podhorszki, B. Ludäscher, S. Klasky, “Workflow
Automation for Processing Plasma Fusion Simulation Data”,
2nd Workshop on Workflows in Support of Large-Scale
Science (WORKS'07), June 25, 2007, Monterey, California,
U.S.A.

[11] J. Cummings et al. “Plasma edge kinetic-MHD modeling in
tokamaks using Kepler workflow for code coupling, data
management and visualization”. Communications in
Computational Physics, 4 (2008), pp. 675-702.

[12] B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T.
Critchlow, E. Deelman, D. D. Roure, J. Freire, C. Goble, M.
Jones, S. Klasky, T. McPhillips, N. Podhorszki, C. Silva, I.
Taylor, and M. Vouk. “Scientific Process Automation and

Workflow Management”. In A. Shoshani and D. Rotem,
editors, Scientific Data Management: Challenges, Existing
Technology, and Deployment, Computational Science Series,
chapter 13. Chapman & Hall/CRC, 2009.

[13] Ilkay Altintas et al, "Provenance in Kepler-based Scientific
Workflow Systems,” Poster # 41, at Microsoft eScience
Workshop Friday Center, University of North Carolina,
Chapel Hill, NC, October 13 - 15, 2007, pp. 82

[14] P. Mouallem, M. Vouk, S. Klasky, N. Podhorszki and
R. Barreto, “Tracking Files Using the Kepler Provenance
Framework”. 21st Intl. Conf. on Scientific and Statistical
Database Management, SSDBM’09, LNCS 5566, pp. 273-
282, New Orleans, LA, USA, June 2009

[15] J. Lofstead, S. Klasky, M. Booth, H. Abbasi, F. Zheng, M.
Wolf and K. Schwan, "Petascale IO using the Adaptable IO
System", Proceedings of the 51st Cray User Group meeting
(CUG 2009), Atlanta, GA, May 2009.

[16] J. Lofstead, F. Zheng, S. Klasky and K. Schwan, "Adaptable,
Metadata Rich IO Methods for Portable High Performance
IO", Proceedings of the 23rd IEEE International Parallel &
Distributed Processing Symposium (IPDPS 2009), Rome,
Italy, May 2009.

[17] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan and
M. Wolf, "Extending I/O through High Performance Data
Services", to appear at Cluster Computing 2009, New
Orleans, LA, August 2009.

[18] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and C. Jin,
"Flexible IO and Integration for Scientific Codes through the
Adaptable IO System (ADIOS)", Proceedings of the 6th
ACM/IEEE International Workshop on Challenges of Large
Applications in Distributed Environments (CLADE 2008),
Boston, MA, June 2008.

[19] C. Docan, M. Parashar and S. Klasky, “DART: A Substrate
for High Speed Asynchronous Data IO”, In Proceedings of
High Performance and Distributed Computing (HPDC'08),
June 23-27, 2008, Boston, Massachusetts, USA.

[20] W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss
and L. E. Sugiyama, "Plasma simulation studies using
multilevel physics models", Phys. Plasmas, vol. 6, p. 1796,
May 1999

[21] H. R. Wilson, P. B. Snyder, G. T. A. Huysmans and R. L.
Miller, "Numerical studies of edge localized instabilities in
tokamaks", Phys. Plasmas, vol. 9, p. 1277, April 2002.

[22] C. Docan et al. “Experiments with Memory-to-Memory
Coupling on Fusion Simulations”, submitted for 5th Intl.
Conf on e-Science, Oxford, UK, Dec. 2009

