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ABSTRACT 

In order to understand the complex physics of mother nature, 
physicist often use many approximations to understand one area 
of physics and then write a simulation to reduce these equations to 
ones that can be solved on a computer. Different approximations 
lead to different equations that model different physics, which can 
often lead to a completely different simulation code. As 
computers become more powerful, scientists can either write one 
simulation that models all of the physics or they produce several 
codes each for different portions of the physics and then ‘couple’ 
these codes together. In this paper, we concentrate on the latter, 
where we look at our code coupling approach for modeling a full 
device fusion reactor. There are many approaches to code 
coupling. Our first approach was using Kepler workflows to 
loosely couple three codes via files (memory-to-disk-to-memory 
coupling). This paper describes our new approach moving 
towards using memory-to-memory data exchange to allow for a 
tighter coupling. Our approach focuses on a method which brings 
together scientific workflows along with staging I/O methods for 
code coupling. Staging methods use additional compute nodes to 
perform additional tasks such as data analysis, visualization, and 
NxM transfers for code coupling. In order to transparently allow 
application scientist to switch from memory to memory coupling 
to memory to disk to memory coupling, we have been developing 
a framework that can switch between these two I/O methods and 
then automate other workflow tasks. Our hybrid approach allows 
application scientist to easily switch between in-memory coupling 
and file-based coupling on-the-fly, which aids debugging these 
complex configurations. 

Categories and Subject Descriptors 
J.2 [Physical Sciences and Engineering]: Physics  

General Terms 
Performance, Design, Experimentation. 

Keywords 
Parallel I/O, workflow design, workflow execution, code 
coupling, plasma simulation. 

1. INTRODUCTION 
One of the goals of modeling complex phenomena, such as in the 
Fusion Simulation [1] is to couple codes, which are either legacy 
codes, or on-going research in their own domain. The complexity 
of coupling codes in this project are that some require loose 
coupling strategies and some require tight coupling. Our 
motivating example is shown in Figure 1, where we are trying to 
couple two fusion simulation codes, the GTC [2] and XGC [3] 
codes for core-edge coupling in a fusion reactor. They both 
calculate with billions or trillions of individual particles so, in this 
example, there will be frequent coupling of large amounts of data 
from large number of processors. In this example, each code 
separately runs on over 20K processor cores and the amount of 
data that can be exchanged, as field information, can be well over 
1 GB of data, which needs to be exchanged every timestep of the 
calculation. A timestep may be completed as frequently as every 
second. Clearly, this operation will stress most file systems since 
the overhead of writing and then reading from disk can be almost 
a second on most systems. The approach taken is to couple the 
data in memory using a shared space abstraction [4]. We want a 
workflow to monitor the minimum and maximum values of the 
variables being passed between the codes. By transferring this 
provenance information over from the coupled simulation to the 
workflow engine, we allow the workflow to understand what is 
happening in the simulation and act on some special conditions.  
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A typical scenario is the following: the maximum value of one of 
the variables grows greater than some acceptable value during the 
code coupling. The application scientists then want the ability to 
transparently switch from memory-to-memory to memory-to-
memory and disk so they can monitor the data. By transparently 
allowing this to occur in the I/O layer of the simulation, the 
workflow monitoring system can start seeing files being 
generated, and transfer the file(s) over to another computer 
system, and then run a series of analysis and visualization tasks. 
The generated images are accessible on our dashboard [5], a web 
portal, where the scientist can see the results and then kill the 
simulation if the results look bad, otherwise let the workflow turn 
off the memory-to-disk portion of the I/O to allow the coupled 
simulation to return back to full speed using only memory-to-
memory coupling.  

 
Figure 1. Coupling GTC and XGC for core-edge simulation 
using ADIOS and DataSpaces. A Kepler workflow monitors 

the coupling. 
Our approach to code coupling is to extend the ADIOS 
componentized I/O framework [6], described in section 3.1, to 
support in-memory coupling by switching the transport method 
from I/O to in-memory coupling. ADIOS allows for I/O 
multiplexing, where multiple methods can be used 
simultaneously. For example if a user and/or a workflow actor 
detects that data should be written to disk as well as moved in 
memory to another component, it can simultaneously switch 
ADIOS to do both, allowing for an easy-to-use system for 
coupling codes together on a single platform or on different 
platforms and allow the system to automatically switch from 
memory-to-memory over to memory-to-disk. This gives users the 
flexibility to switch between these two I/O methods when they are 
in the process of debugging the system or when new physics is 
added into the codes. It also allows users to save to disk both the 
provenance information from the data that is being exchanged 
from the codes as well as the actual data being exchanged.  

In this paper we present the components that enable us to realize 
the vision above. The provenance framework in Kepler [7] allows 
us to record information from the simulation in the I/O pipeline. 
The use of provenance in our existing fusion framework is 
discussed in section 2. Section 3 presents trends in scalable I/O 
research. In Section 4 we show how the simulation I/O is 
connected to the Kepler workflow directly via a new ADIOS 
method and discuss the events observed in the workflow. 
Subsection 4.3 discusses different applications of this technique 

and includes a description of an already existing fusion code 
coupling application and the effects on the workflow 
implementations by going from disk-based coupling to memory-
to-memory coupling.  

1.1 Related work 
There are two pieces of related work. The Argonne Model 
Coupling Toolkit (MCT) is a framework that facilitates model 
coupling between model components in the Common Community 
Climate System Model (CCSM). MCT uses a flux coupler to 
transfer data between physics simulation components. In this 
approach, message exchange schedules cannot be changed 
dynamically since they are hard-coded in the source codes. Load 
balancing is also hard-coded in the source and is performed 
explicitly in MCT. In order to couple the Weather Research & 
Forecasting (WRF) model to the Regional Ocean Model System 
to study hurricanes1, they combined the WRF I/O with the MCT 
coupling infrastructure2. This coupling system is designed for data 
exchange between moderately sized codes running on separate 
Grid resources, but it can have scalability issues and was not made 
to be integrated with a scientific workflow system. 
The Distributed Data Broker (DDB) project [8] also targets the 
problem of code coupling, but has a different approach than ours. 
DDB uses a central resource, i.e., a broker, to gather global 
information about the data distribution of the coupled 
applications, and to compute required communication schedules 
between the applications. Data coupling is formulated using the 
producer-consumer pattern, where the producer uses the pre-
computed communication schedules to send data to the consumer. 
While this is an elegant distributed solution, it assumes predefined 
and static coupling behaviors, imposes tight synchronization 
requirements, and implicitly assumes that the end applications can 
directly communicate with each other. 

2. FUSION WORKFLOWS FOR CPES 
The Center for Plasma Edge Simulation (CPES) project aims to 
develop an integrated and predictive plasma edge simulation 
package [1] applicable to existing magnetic fusion devices and 
future burning plasma experiments like ITER (the 
International Thermonuclear Experimental Reactor). The compu-
ter science participants of the project are developing the End-to-
end Framework for Fusion Integrated Simulation, or EFFIS [9], 
which addresses all the challenges that code coupling and multi-
institutional collaboration of physicist, applied mathematicians 
and computer scientists face: massive data I/O, data exchange 
between codes, coordination of code activities/executions, post-
processing, archiving, and a collaborative portal for analysis. In 
this project, we selected Kepler for constructing workflows and 
extended Kepler for these purposes in [10]. We use Kepler to 
coordinate code coupling, transfer data for exchange between 
codes, and to visualize the diagnostic output of each code on the 
fly so that an application scientist can monitor the progress of the 
simulation from a web browser. A file-based coupling workflow 
for the kinetic and MHD codes was described in detail in [11]. 
Another workflow, described in [12], to monitor XGC1 
simulations of micro-turbulence in the plasma edge has been 
extensively used for hundreds of simulations. Similar monitoring 

                                                                    
1 http://nctr-people.pmel.noaa.gov/cmoore/wrf-roms/index.html 
2 http://www-ad.fsl.noaa.gov/ac/schaffer/mct_wrf_io_api.html 



workflows have been built for core turbulence simulations in 
other projects for GTC, GEM and PIXIE3D based on this 
workflow. The GTC and XGC1 monitoring workflows are 
incorporated into of the XGC-GTC coupling workflow.  

2.1 Provenance recording from source code to 
movies 
Application scientists need to analyze and visualize data produced 
by simulations to gain knowledge from the simulations. Both run-
time and post analysis require additional meta-data or provenance 
information to track what data is used to create a visualization or 
analysis result and what operation(s) were applied to it. 
Provenance recording is the key to enabling the dashboard to hide 
the details from the users allowing them to focus on the scientific 
variables instead of keeping track of the thousands of files that 
may be generated from one simulation run. The Scientific Process 
Automation group (SPA) of the DOE Scientific Data Management 
Center (SDM) developed the Kepler provenance framework [13] 
that we use in EFFIS to record and retrieve the data lineage. For 
example, if a user wants to execute an analysis job on the 
dashboard, the user selects which variables to include in the 
analysis and executes the analysis without knowledge about the 
actual location and names of the files [5]. Data for analysis is 
selected by the user as a movie or a frame of the movie. Data 
lineage information is used to discover what image is behind that 
frame and what data file(s) were used to produce that image. Then 
the analysis job is executed on that data. In a similar fashion, the 
user might want modifications to the visualization shown on the 
dashboard and can run new visualizations based on the variables, 
not on the files. Here the dashboard has to determine what data 
file and what image creation method was used so that it can rerun 
that method with the new options.  

The workflow also records the system environment information 
including: the name of the computer where the simulation code 
was built, the list of libraries and versions used, and the source 
code of the simulation. After a simulation, the user can review the 
simulation source files and environment for the application 
including the source code of the analysis routines. Similarly, the 
environment in which the code was built can be reviewed. 
The Kepler provenance framework records all details about all of 
the entities in a workflow application, which becomes a large 
amount of collected meta-data when running workflows. Since 
these workflows are complex, we had to add several mechanisms 
for mining the provenance data to track files that exist on disk as 
well as files that have been archived by the workflow. The 
recording of provenance information and the algorithms to track 
the provenance for the dashboard use is described in detail in [14]. 

3. SCALABLE I/O TRENDS 
High Performance Computing (HPC) systems continue to grow in 
size and complexity. As the systems grow in size, they increase 
both their aggregate memory and their overall computational 
power. For example, the recent additions to the Cray-XT5 
computer at ORNL have increased the number of processors 
(cores) to almost 150K cores from 30K cores and it has over 300 
TB of memory. In order to write data efficiently, the I/O system 
was upgraded from 60GB/s to over 220 GB/s. Although these 
numbers sound outstanding, the ‘actual’ real-world performance 
can be orders of magnitude less than these results. The I/O system 
contains thousands of disks. In order to obtain optimal I/O 
performance, one must be able to use all of the disks to gain 

maximum parallelism in the I/O system. Furthermore, complex 
file formats like NetCDF and HDF5, which require writes to be in 
a contiguous logical format, can stress the shared network on Cray 
XT and Infiniband architectures. This often causes poor parallel 
I/O performance as shown in our previous research [16]. 
Researchers are also forced into making difficult coding decisions 
to use either complex APIs or simple I/O in binary or ASCII 
format lacking metadata. These decisions often force them into 
using non-optimal I/O practices when porting their code to new 
architectures and may even render the I/O useless.  

There are different directions in I/O research to overcome this 
problem and provide optimal tools for all I/O scenarios code 
developers face. Our solution is to use ADIOS, which can make 
coding I/O easy (easy to use APIs) yet provides ways to choose 
the best performing methods to write data out without modifying 
the source code of the simulation. DataSpaces is one ADIOS 
method, described in 3.1, which allows the exchange of data 
between two codes running on the same computer through 
memory avoiding file I/O. Staging and in-line processing can 
further improve the I/O performance when writing files or 
perform additional operations on the data being exchanged 
between two codes. These developments are described in the 
following subsections.  

3.1 ADIOS 
The ADaptable I/O System, (ADIOS) is a componentization of 
the I/O layer. It provides an easy-to-use programming interface, 
which can be as simple as FORTRAN file I/O statements. ADIOS 
abstracts I/O metadata information and data structures from the 
source code into an external XML file reducing code pollution 
and creating the connection between high-level APIs and 
underlying I/O implementation details, such as buffering and 
scheduling. By separating the detailed I/O implementation from 
the APIs, ADIOS also allows users to simply change the 
declaration of the I/O methods in the XML file without any source 
code modification. 

Some of the key features of ADIOS are that it allows for 
extremely fast I/O [15], has a high level of resiliency [16], and can 
be used for creating multiple operations in I/O staging [17]. 
ADIOS can also be used to select different methods, at or during 
runtime, for coupling codes together, in memory, as well as file-
based coupling. By using the provenance capturing method [18], 
ADIOS can capture the provenance information in both cases, 
without changing the codes or the workflow. 

ADIOS development has initially concentrated on write 
performance. In Figure 2 below, twenty GTC code runs measured 
twice with two different actual I/O methods are shown. We show 
that we can achieve 70 GB/s when writing data on the Cray XT-5 
at ORNL. This level of performance allows researchers to write 
metadata-rich data, in the ADIOS-BP format. 

Our reading performance of ADIOS-BP files on the Cray XT-4 at 
ORNL has also been able to get excellent performance. In 
Figure 3, we read in 62 GB data from BP files written from a 
GTC run on 32K cores. We see that it takes approximately 2 
seconds to read in this file from a reasonable number of cores.  

Since ADIOS is an I/O componentization that allows users to 
switch the I/O methods during runtime, we argue that combining 
this with provenance capturing methods, in situ visualization 
methods, and code coupling methods, ADIOS can be used as a 
general framework to couple fusion codes together. 



 
Figure 2. ADIOS write performance. Two I/O methods are 

shown here with 20 GTC test runs each. 

 
Figure 3. ADIOS read performance for GTC data. Using 

enough processors to read, over 30GB/sec data rate can be 
achieved. 

3.2 DataSpaces: memory-to-memory data 
exchange 
DataSpaces is an advanced coordination and interaction 
framework to provide the abstractions and mechanisms to support 
flexible and dynamic inter-application collaboration at runtime. It 
builds on ADIOS, specifically the DART [19] asynchronous data 
transport method provided by ADIOS. DART uses RDMA 
(Remote Direct Memory Access) provided by advanced 
communication technologies and is optimized for fast, 
asynchronous data transfers with low latency and small 
overheads. Furthermore, it enables direct memory-to-memory 
communication between the nodes of distinct applications through 
RDMA. DART is particularly suited for high performance 
applications as it enables the overlap of computations and 
communication allowing better utilization of the computing 
resources.  
DataSpaces provides the abstraction of a virtual semantically-
specialized shared space that can be asynchronously and flexibly 
accessed using simple yet powerful operators (e.g., put() and 
get()) with appropriate selectors. These operators are agnostic of 
the location, source/destination, the distribution of the data, and 

the interacting application components. It also supports “in-the-
space” manipulation and/or reduction of data using pre-defined 
and user-defined functions, as well as abstractions for data 
subscriptions and notifications.  In our ADIOS implementation of 
DataSpaces, we use the I/O interface (write, read) to allow RDMA 
operations (put, get) without changing the source code. This 
enables users to easily switch from the DataSpace method to an 
I/O method such as MPI I/O. 

The DataSpaces architecture is composed of three key layers: 
communications layer, directory layer, and the storage layer. The 
communications layer builds on DART and extends its 
communication and data transport capabilities to support control 
and data message exchange. It also adds support for node 
discovery, registration and notification.  

The directory layer provides the coordination capabilities and 
tracks data sources, sinks and distributions. It enables applications 
to insert, query and retrieve data from peer nodes in the space. It 
is implemented as a semantically enhanced distributed hash table 
(DHT), which is dynamically distributed across the nodes that are 
part of the space to provide load balancing when data is inserted 
in the space and enables efficient look-ups when data is retrieved 
from the space. It supports subscribe/notification mechanisms and 
autonomic cleanup when data is no longer referenced. 

The storage layer hosts the actual data being shared among the 
applications (i.e., the objects put into the space). This layer 
implements a coherency protocol, which defines and determines 
the interactions of an object with the space. For example, the 
protocol defines and determines when an object can be inserted, 
updated, destroyed or removed from the space. This layer also 
preserves data integrity when multiple application nodes access 
the data simultaneously.  
An initial prototype of DataSpaces has been implemented and 
deployed on the Jaguar Cray XT5 system at Oak Ridge National 
Laboratory and is being used to support coupled fusion simula-
tions as part of the CPES project. DataSpaces provides 
asynchronous coupling capabilities allowing the coupled applica-
tion codes to progress independently at different rates and to ex-
change data at runtime without making any assumptions about the 
frequencies of interactions or the relative execution speeds of the 
codes or forcing synchronizations. Initial evaluations have 
demonstrated the performance benefits as well as the flexibility of 
DataSpaces. 

3.3 Staging area and in-line data processing 
Asynchronous I/O combined with extra compute nodes as a 
staging area can further improve the performance of the I/O and 
decrease the latency of I/O in the application. Asynchronous data 
transport methods such as DataTap [17] and DART [19] for 
ADIOS have been tested with the GTC and XGC1. Using these 
methods, data from the 10k+ cores of the simulation is not 
streamed directly towards the file system, but to the staging nodes 
(see Figure 4). The processes on the staging nodes can use another 
ADIOS I/O method to write to a file in parallel (like the MPI-IO 
method to write ADIOS-BP file(s) or the pHDF5 method to write 
directly an HDF5 formatted file). 

In [17], we extend the idea to perform data analytics in the staging 
nodes. Operations like data reduction (without loss of scientific 
validity), compression, indexing for fast data access, and 
lightweight diagnostic calculation for monitoring the health of the 
simulation can be placed inside the staging area. As Figure 1 



shows, interpolation of the data from the mesh used in GTC to the 
mesh XGC1 is necessary to couple the two codes. The 
interpolation can either be executed within one of the codes as an 
extra step when the exchange is performed or in the staging area 
itself. The abstract design of Data Services in [17] allows one to 
put the extra manipulation process into the staging area.  

 
Figure 4. Using staging-nodes to gather data before writing to 

disk. CN denotes a compute node of the supercomputer 
Another useful operation for GTC is sorting of the particle data 
before it is written to disk. The particle simulation code is 
calculating with billions of particles (ions and electrons). Each 
particle has an id, which can be used to trace the movement of the 
particle. Sorting is necessary when to visualize or analyze a subset 
of the data on a handful of processors. This allows reading only a 
small subset of particles for each timestep instead of browsing 
through large files searching for them. The particle count of 2-8 
billion in today’s GTC runs mean 64-256 GB files per timestep, 
and there are 100-1000 write-out timesteps.  

4. COMMUNICATION OF I/O SERVICE 
AND THE WORKFLOW SYSTEM 
4.1 Connection from ADIOS to Kepler 
The activities of the I/O components can be reported to the 
workflow so that it can record them and make decisions on what 
to do. The I/O routines are part of the simulation executable and 
are running on computational nodes of a supercomputer. These 
nodes can only communicate with the outside world via the file 
system and the front-end nodes of the supercomputer through 
sockets. In our approach, we establish a two-way communication 
between the I/O component and the workflow. The 
communication goes through a front-end node of the 
supercomputer.  

The workflow runs on a separate system and is connected to a 
front-end node of the supercomputer to watch the output 
directories of the simulation and initiate the data transfers in 
current workflows. Since the workflow is connected to a front-end 
node with an SSH connection, we implement the connection by an 
indirect socket connection between the simulation and the 
workflow utilizing the remote port forwarding mechanism 
provided by the SSH server, see Figure 5. We have added support 
for port forwarding to the org.kepler.ssh3 package of Kepler so 
when an SSH session is established to a resource, a list of remote 
ports and local ports can be supplied to be connected through the 
                                                                    
3 svn repository: https://code.kepler-project.org/code/ 

kepler/trunk/modules/util/src/org/kepler/ssh 

virtual SSH tunnel. Kepler actors using this package can listen on 
one of the local socket ports and receive data from entities that 
connect to the corresponding remote port on the connected 
resource. All communication on that remote port is forwarded by 
the connected SSH server back and forth. This is physically 
implemented as a separate user level process on the remote 
machine, which forwards the communication.  

Since ADIOS allows the simulation to utilize two or more 
transport methods for the same data, we created a separate method 
for the purpose of communicating with the workflow instead of 
modifying all of the existing methods and requiring this of any 
new transport method. This new method, named adios-
provenance, reports the metadata through a socket connection. 
Working independently from the actual I/O method in the 
simulation, this method notifies a workflow of the I/O activities in 
the same form no matter if the other method writes the data into a 
file or passes it through a staging area to be consumed by a 
coupled code. Since the metadata, or index, of the data is small, it 
is gathered on one processor of the application and the connection 
is established only between this processor and Kepler. 

 
Figure 5. Socket connection from ADIOS I/O component to 
the remote Kepler workflow. FE denotes a front-end node. 

4.2 Information exchanged between the I/O 
and the workflow 
We are interested in the following I/O events in Kepler: 

- Write. File “foo” is created/ updated.  
- Method. Which ADIOS method is used for I/O. 

- Variable. A single variable is written. It includes simple 
statistics of the variable. 

- Terminate. Simulation terminated. 
When the simulation writes out data of a completed calculation 
cycle (timestep), the workflow should react immediately and grab 
the data for post-processing. This means that the workflow must 
know when the file is actually completed writing, not just opened 
for writing. In the ADIOS API, an open() call opens the file, 
followed by a series of write() calls of individual variables that 
are buffered, assuming sufficient memory is available, and is 
terminated by a close() call in each timestep. The data actually 
starts being written to disk by ADIOS at the close() call so that 
it can achieve the best possible I/O performance by writing one 
large buffer to disk. The only exception to the buffering is if I/O 
streaming starts earlier or if the available buffer fills. The 
workflow is only interested in the fact that data has been written 



out, so the write event should be sent by the close() call. Note 
that in ADIOS the close() method is used at each timestep to 
initiate streaming the data buffer onto disk. 
With memory-to-memory methods used for coupling two codes, 
foo is not a file on disk. If the workflow is going out to grab the 
data in case of a Write event, it fails to find it. Therefore it needs 
to know the actual I/O method used by ADIOS to decide if it can 
process a file or just record the provenance of the I/O activity. 
This information is available during the close() call and is sent 
too as a Method event. 

If more information is needed about what was written, the 
Variable event describes the variable name, type, size, associated 
constant attributes and dynamically calculated characteristics, like 
min/max. The workflow would need this information if it were 
monitoring a variable and should react if the minimum or 
maximum value during a timestep exceeds a threshold. ADIOS 
knows all this information during the write() calls. Since the 
variable is generally not written directly into the file during the 
write() call, this information is sent from the close() call too.  

The termination of the simulation is not directly recognized by 
ADIOS. However, it has initialize() and finalize() 
methods, much like parallel libraries like MPI. When 
finalize() is called, the simulation indicates that there will be 
no more data produced by any method. This function calls each 
I/O method that was used during the run to release all resources 
they might still use. The adios-provenance method sends this 
single Terminate event out on the socket connection signaling the 
workflow that no more events will come from this simulation.   

The extra work of index interpretation and transformation to text 
in the I/O component itself slowing down one of the simulation 
processes is undesirable. In the prototype implementation, 
therefore, the binary form of the metadata (variable indices and 
data characteristics) intended to be written as a data block into a 
file, is sent out by the adios-provenance method within the 
simulation process. Therefore, the above events of interest are 
generated from the binary index data at the receiver end, i.e. in 
Kepler. All the Write, Method and Variable events can be 
generated at the same time from this data when it is received from 
the simulation. The Stop event is sent by the I/O layer separately 
in the finalize() method.  

4.3 Applications of the I/O-workflow 
communication 
4.3.1 Watching simulation output without polling 
The current monitoring workflows, when watching simulations to 
grab newly generated data, are doing intrusive polling for new 
files by regularly listing the simulation directory with the 
SSH Directory Listing actor [10]. On parallel file-systems, the 
“ls -l” command to list the file names, sizes and date information 
is an expensive operation that can slow down simulations by 
accessing the metadata server and individual storage nodes of the 
file system to gather all information for the potentially large 
number of files in that directory. This can negatively impact all of 
the simulations running on the supercomputer when the workflow 
is running. By delivering the simulation I/O events to the 
workflow directly when they occur, the workflow can react faster 
and watch the simulation without a single query on the file 
system. The only information needed from the metadata is the 
name of the file(s) created or updated by the simulation (through 

the Write events). Similarly to the listing actor, the downstream 
pipeline can be fed with the names of files. Thus, only the listing 
actor is replaced with the new actor in the existing workflows to 
accomplish the polling free monitoring.  

4.3.2 Provenance recording of variables not saved in 
files 
One consequence of in-memory coupling of different codes is that 
the information exchange is not recorded in files. This prevents an 
external observer from seeing what is happening or performing 
additional operations on data, if needed. Using ADIOS in the 
coupling communications, simple characteristics (dimensions, 
max, min) of the variables being passed between the coupled 
codes are sent to the workflow engine. The workflow watches the 
characteristics along with the communication activities of the 
coupled codes through the Variable events so that certain events 
can be triggered.  

The basic action for the workflow is to make a visualization of the 
values it receives from the simulation. If, phirms, the root mean 
square of the phi variable is watched to make decisions in the 
workflow, it generates a “phi root mean square” plot on the 
dashboard like the one in Figure 6. The data analysis scenario of 
Section 2.1 then applies to this plot too with the exception that 
there is no file behind the plot to be found by the provenance 
framework. Later, the scientist may want to select data of the phi 
variable saved in files for the timesteps when the value of phirms 
was a certain value and run analysis on that subset of phi data. 
Provenance recording of the workflow activities helps performing 
this selection automatically. The relationship between the phirms 
values and the plot is given by the data lineage. The provenance 
framework records the input token of the plotting actor, which 
contains the phirms value as well as the output token, which 
contains the image file name. The provenance database must be 
queried for all executions of the plotting actor to gather the input 
values to those actor executions, getting the phirms values over 
the whole time series. 

 
Figure 6. The root mean square of the phi variable in GTC is 
a plot of single values over time (i.e., an image file). Can you 
answer the question “In what timesteps was the value greater 

than M?” programmatically? 

4.3.3 XGC-M3D coupling with stability checking 
The CPES Full-ELM coupling application [11] enables physicists 
to study the dynamic interaction of kinetic effects that cause a 
buildup of the edge pedestal in plasma density and temperature 
profiles and large bootstrap currents with Edge Localized Modes 
(ELMs) that may limit pedestal growth and tokamak reactor 



performance. Three different fusion codes are used in this coupled 
simulation as shown in Figure 7. XGC0 [3] reads in at the 
beginning a so-called equilibrium data file (g-eqdsk) related to the 
simulated fusion device and the physical experiment of interest 
(analytic profiles for the edge plasma density, temperature and 
magnetic equilibrium data). A shared-memory version of the 
M3D code [20], M3D-OMP is used to update this equilibrium 
data during the simulation, using the XGC0 status stored in a file 
named m3d.in. The refined g-eqdsk data is then read in by XGC0 
to maintain self-consistency. To check the linear MHD stability of 
XGC0, a third code, ELITE [21] is executed in a parameter 
sweep. The edge plasma density data (p-eqdsk) from XGC0 is 
needed in addition to the g-eqdsk data for an ELITE run. When 
some ELITE steps in the parameter sweep finds XGC0 unstable, 
the XGC0 kinetic model must be stopped and a nonlinear 
simulation of the ELM using the parallel M3D-MPP code 
launched. This will eventually recover a modified equilibrium 
from this simulation that can be used to begin a new XGC0 run 
that will start the cycle over again. 

 
Figure 7. Schematic of full-ELM coupling 

In the first implementation of the coupling, presented in [11], a 
Kepler workflow orchestrates all code executions where the data 
exchange is performed via files (see Figure 8). The workflow 
discovers whenever XGC0 creates a new output (m3d.in and 
p-eqdsk), and then it submits an M3D-OMP job with the current 
m3d.in and g-eqdsk data. When M3D-OMP is finished, the 
workflow prepares a parameter sweep of ELITE jobs for which it 
copies the p-eqdsk data from XGC0 and the corresponding 
g-eqdsk data produced by M3D-OMP. The workflow also 
transfers the updated g-edqsk file back to XGC0. When the code 
becomes unstable, the workflow kills XGC0 and submits an 
M3D-MPP job after interpolating XGC0 data for its input using 
M3D-OMP. Besides the coupling orchestration, the workflow 
continuously monitors the codes for their output and creates 
images from them. The codes happen to use different file formats 
(NetCDF, HDF5, ADIOS BP format and text files) and the 
workflow is using different tools (xmgrace, AVS, gnuplot and 
IDL) to produce the visualizations shown in Figure 9. These 
images, updated as new data becomes available, show the status 
and progress of the coupled simulation.  

In the second implementation, presented in [22], XGC0 and M3D-
OMP are tightly coupled via memory-to-memory communication 

using ADIOS and DataSpaces. Data once written into m3d.in and 
g-eqdsk files are now exchanged via I/O services as illustrated in 
Figure 10. The implementation consists of a client component that 
is integrated with the two application codes and allows for 
dynamic data exchange at run time, and a space component that 
runs on a cloud of “staging nodes”, which are dedicated for the 
space and independent of the application nodes. The DataSpaces 
client on the XGC0 application inserts plasma profile data objects 
in the shared space and the DataSpaces client on the M3D-OMP 
application extracts and passes them to the application. In the next 
step, the DataSpaces client on the M3D code inserts MHD 
equilibrium data objects back in the space and the DataSpaces 
client on the XGC0 extracts and passes them to the application.  

 
Figure 8. Kepler workflow of file-based Full-ELM coupling 

 
Figure 9. Images generated by the workflow from the data of 

the different codes participating in the coupled simulation 
The tighter coupling of XGC0 and M3D-OMP enables the 
equilibrium update to be performed more often while the stability 
checking still takes the same time as with the first 
implementation. The frequencies of these two steps are now 
separated. The ELITE coupling is still performed by the workflow 
therefore XGC0 still generates a p-eqdsk file at regular intervals 
while M3D-OMP writes the g-eqdsk data to a file too besides 
putting it to the DataSpaces. The difference between the two 
workflow implementations is little compared to their complexity. 
The original workflow watches for m3d.in files (i.e., watches 
XGC) and executes M3D-OMP as a job to get the g-eqdsk file and 



then it takes the corresponding p-eqdsk file to run the ELITE jobs. 
The second workflow watches for the g-eqdsk files to appear on 
disk (i.e. watches M3D-OMP). However, this workflow could be 
implemented very similar to the first one. It would watch for the 
event that corresponds to the writing of the m3d.in to a file in the 
first implementation, which is the Write event of m3d.in from 
XGC. On such event, instead of executing M3D-OMP, it would 
just wait for the Write event of g-eqdsk file from M3D-OMP. 
Besides this, the workflows are identical in all steps. 

 
Figure 10. XG0-M3D coupling using DataSpaces framework 

The Method event allows a workflow to know which transport 
method was actually used, i.e. to know if XGC is coupled to 
M3D-OMP memory-to-memory or the workflow is expected to 
run M3D-OMP. We can thus build a single coupling workflow, 
where a logical branch, see Figure 11, within the “M3D-OMP” 
step handles the different workflow behaviors in the two coupling 
cases but otherwise everything is the same as in the original 
workflow. 

 
Figure 11. M3D-OMP step (composite actor in Kepler) in the 
combined workflow. Either M3D-OMP is executed with files 

as input, or the workflow waits until the tightly coupled M3D-
OMP signals the completion with a “Write g-eqdsk” event. 

Since ADIOS is designed to allow changing the I/O method 
during the simulation, we can enable the workflow to talk directly 
to ADIOS to switch the I/O method. These techniques together 
enable us to design coupling scenarios where the workflow can 
turn on and off a tight coupling and replace it with a slower, file-
based coupling, but perform additional operations if some 
conditions are observed.  

5. CONCLUSION AND FUTURE WORK 
This paper presents our vision of coupling two large fusion 
simulation codes with memory-to-memory coupling while 
monitoring the data exchange in a workflow by connecting the 
code(s) to the workflow via the I/O library used in the simulation 
to exchange data. The workflow can change from memory-to-

memory coupling to a file-based coupling and back to perform 
additional analysis on the data, if needed. We use the ADIOS 
componentized I/O library for the communication, which allows 
for using multiple I/O methods behind a single I/O function call in 
the simulation. A new method, adios-provenance was created to 
send metadata about the exchanged data to the Kepler workflow. 
The connection is currently implemented by an indirect socket 
connection from the Kepler workflow engine to one of the 
processes of the simulation utilizing the port forwarding 
mechanism of ssh servers. The gathering of the metadata allows 
us to produce image plots on observed variables without them 
being written to files; to build a workflow that orchestrates and 
monitors a coupling application with different coupling methods; 
even change from memory-to-memory coupling to a file-based 
coupling during a coupled run so that additional analysis can be 
performed on the data being exchanged; or simply just watch for 
the output data of a simulation for post-processing without polling 
the output directory of the simulation.  

There are some disadvantages of the direct connection of the 
simulation and the workflow. In our framework, simulations are 
submitted by the coupling workflow. The workflow establishes 
the connection to the supercomputer front-end before the 
simulation starts so the port information can be a parameter for 
the simulation. However, in the case of monitoring workflows, the 
workflow is started later to monitor an independently submitted 
simulation so the I/O service regularly needs to perform a 
discovery procedure to find the port as long as the workflow 
establishes the SSH connection to the front-end node and creates 
the forwarded port. Events occurring before the connection is 
established, or between a disconnection and reconnection in case 
of a failure, should be temporarily stored somewhere. Another 
disadvantage of our prototype is that the binary form of the 
metadata emitted by the ADIOS method within the simulation 
process should be processed in the Java environment of Kepler. A 
more general framework can be designed so that events of interest 
are generated from the index binary data and put into a database 
via some kind of service accessible from the simulation. Then 
Kepler or some other system could subscribe to the service to 
receive events from the observed simulation. However, since we 
want control from the workflow to possibly change the I/O 
method in the simulation on the fly, we need to design a 
decoupled way to access the simulation’s I/O layer from the 
workflow, which is straightforward with the direct connection we 
have now. 
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