
Domain Characteristics

High Process Count

– Even with small per process data volumes, aggregate data
volumes very large (10s of TB per output).

– Communication during IO can negatively impact
performance.

Large Storage Systems
– 100s of storage targets that must be managed to get
performance.

– Shared use by analysis data preparation impacts other
users.

Multi-user Systems
– Simultaneous large jobs run concurrently (internal)

–File system may be shared across systems (external)

–Prep data in transit to aid downstream usage.

High Performance IO on Busy SystemsHigh Performance IO on Busy Systems
Jay Lofstead, Qing Liu, Scott Klasky, Michael Booth,

Ron Oldfield, Karsten Schwan, Matthew Wolf

lofstead@cc.gatech.edu, liuq@ornl.gov, klasky@ornl.gov, mike@hpcresults.com

raoldfi@sandia.gov, schwan@cc.gatech.edu, mwolf@cc.gatech.edu

Center for Experimental Research in Computer Systems

College of Computing, Georgia Tech

Non-Contiguous Data Layout
– Store on a per-process basis to avoid collective IO

communication overheads and limits

– Resilient to failures by replicating metadata

– Move index to a footer to avoid data movement

– Annotate to handle 3-D domain decompositions

easily

Mapping to Physical Resources
– IO method selected based on platform

– IO approach understands file system characteristics

and adapts to take maximum advantage

Manage Variability
– Acknowledge systems are multi-user

Project Goals
Achieve high percentage peak IO on a

more consistent basis

Prepare data for analysis through

annotation and embarrassingly parallel ops

Flexible placement of operations.

Flexible methods for IO to change inline

ops to offline without changing code

Improve analysis performance via data

annotation and reorganization during output

Portable libraries with limited

dependencies for maximum options.

Host Application System View

External

Metadata

(XML file)
Scientific Codes

ADIOS API

D
A
R
T

L
IV

E
/
D
a
ta
T
a
p

M
P
I-IO

P
O
S
IX

IO

H
D
F
-5

p
n
e
tC

D
F

V
iz

E
n
g
in
e
s

O
th

e
rs

(p
lu
g
-in

)

Platform Concerns

API performance on platform

– The best performing IO API for a platform varies.

– Some platforms do not have a working implementation of
an API requiring selecting a different choice (e.g., HDF-5).

File system characteristics vary

– Adjust the IO organization to meet system characteristics
(stripe size/count, storage targets).

– Respond to variations in performance of the file system
dynamically (adaptive IO techniques).

Scientific Codes Integrated

Fusion

–GTC, GTS, XGC-1, XGC-0, M3D, M3D-K, Pixie3D.

Astrophysics

– Chimera

Combustion

– S3D

AMR Frameworks

Summary
By working with both the science codes and

the file system, the best IO method for the

current platform can be selected. For each

platform, different configurations must be

taken into account in order to maximize

the consistency and overall performance

of IO. By spending a fraction more time

during writing to annotate the data,

reading can be greatly enhanced.

Collection of simple statistics like min and

max for local array pieces can be

combined easily during a read operation

with a nearly fixed time no matter the

number of processes that wrote the data

nor the size of the data written. These and

other operations can not only improve

write performance and reduce variability,

but it can also aid in read performance.

References
1. Lofstead, J and Zheng, F and Klasky, S and

Schwan, K. "Adaptable, Metadata Rich IO

Methods for Portable High Performance IO.",

Rome, Italy, May, 2009.

2. Lofstead, J and Zheng, F and Klasky, S and

Schwan, K. Input/Output APIs and Data

Organization for High Performance Scientific

Computing. , Austin, Texas, November, 2008.

3. Lofstead, J and Klasky, S and Schwan K and

Podhorszki, N and Jin, C. "Flexible IO and

Integration for Scientific Codes Through The

Adaptable IO System (ADIOS).", CLADE 2008 at

HPDC, Boston, Massachusetts, June, 2008.

http://adiosapi.org/

– Acknowledge systems are multi-user

– Acknowledge file systems may be shared across

multiple systems

– Develop techniques to adapt to changing system

characteristics

Consider Arbitrary Read Performance
– Write format has been shown to improve read

performance for more than a handful of processes

against arbitrary data decompositions

– Generate data characteristics to aid in data selection

– min, max initially at write

– other statistics (global spatial and spatial/time) at

read time

Performance Results

Staggered Output

Process Organization

dynamically (adaptive IO techniques).

Annotate data to aid in analysis

– Generate characteristics for locating data (min, max)

– Index data with characteristics to aid in finding

– Use resilient formats to protect output data

AMR Frameworks

– Chombo

– Cactus (coming soon)

Others
– GEM, GTK

– Starting discussions with climate and others

Adaptive Output

Process Organization

Pixie3D Adaptive Serial HDF-5 Writing

GTS Adaptive Serial HDF-5 Writing

Staggered MPI-IO Large Scale Writing

