
Input/Output APIs and Data Organization for High
Performance Scientific Computing

Jay Lofstead
College of Computing

Georgia Institute of Technology
Atlanta, Georgia

lofstead@cc.gatech.edu

Fang Zheng
College of Computing

Georgia Institute of Technology
Atlanta, Georgia

fzheng8@mail.gatech.edu

Scott Klasky
Oak Ridge National Laboratory

Oak Ridge, Tennessee
klasky@ornl.gov

Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, Georgia

schwan@cc.gatech.edu

Abstract—Scientific Data Management has become essential
to the productivity of scientists using ever larger machines and
running applications that produce ever more data. There are
several specific issues when running on petascale (and beyond)
machines. One is the need for massively parallel data output,
which in part, depends on the data formats and semantics
being used. Here, the inhibition of parallelism by file system
notions of strict and immediate consistency can be addressed
with ‘delayed data consistency’ methods. Such methods can also
be used to remove the runtime coordination steps required for
immediate consistency from machine resources like Bluegene’s
separate networks for barrier calls and its dedicated IO nodes,
thereby freeing them to instead, perform alternate tasks that
enhance data output performance and/or richness. Second, once
data is generated, it is important to be able to efficiently access
it, which implies the need for rapid data characterization and
indexing. This can be achieved by adding small amounts of
metadata to the output process, thereby permitting scientists to
quickly make informed decisions about which files to process
from large-scale science runs. Third, failure probabilities increase
with an increasing number of nodes, which suggests the need for
organizing output data to be resilient to failures in which the
output from a single or from a small number of nodes is lost or
corrupted.

This paper demonstrates the utility of using delayed consis-
tency methods for the process of data output from the compute
nodes of petascale machines. It also demonstrates the advantages
derived from resilient data organization coupled with lightweight
methods for data indexing. An implementation of these tech-
niques is realized in ADIOS, the Adaptable IO System, and its
BP intermediate file format. The implementation is designed to
be compatible with existing, well-known file formats like HDF-5
and NetCDF, thereby permitting end users to exploit the rich
tool chains for these formats. Initial performance evaluations of
the approach exhibit substantial performance advantages over
using native parallel HDF-5 in the Chimera supernova code.

I. INTRODUCTION

Scientific data formats like HDF-5 and NetCDF have
given rise to rich tool chains for use by science end users.
Performance issues with their direct use by petascale (and
beyond) applications, however, demonstrate the need for (1)
improvements in scalability with respect to the degree of

attainable parallelism, a specific technique used in this paper
being delayed data consistency, (2) the ability to perform
rapid data characterization to improve scientific productivity,
and (3) resilience to isolated failures through improved data
organization.

Delayed consistency is well-known to improve the perfor-
mance of file systems. This paper explores its advantages
outside such regular IO paths, by applying it to the process
of producing output data on the compute nodes of petascale
machines. Here, by delaying consistency computations, the
total time taken by each compute node to complete its IO is no
longer affected by the completion time of other nodes and/or
by the control operations like the broadcast calls performed
by the current implementation of HDF-5. Eliminating control
operations also obviates the use of precious machine resources
like Bluegene’s separate control network for purposes like
these, and it removes associated computations and delays
from IO nodes. For instance, the current implementation of
parallel HDF-5 uses these resources for broadcast calls to
ensure data consistency. Finally, the use of and need for such
specialized hardware introduces issues with code portability.
An example is the exposure of its coordination infrastructure to
science codes by the MPI ADIO layer. By instead, hiding these
behind a simple higher level API, alternative coordination
mechanisms and collective operations (e.g., delayed consis-
tency methods) can be implemented without necessitating code
changes.

While potentially improving application performance, tech-
niques like delayed consistency do not directly contribute to
the productivity of the scientists running these codes. Here, it
is useful to associate additional functionality with data output,
such as lightweight, compact mechanisms for data character-
ization and indexing. This has been recognized by others,
resulting in index methods for HDF-5 files, like FastBit [1]
and PyTables [2], which each provide various levels of detail
about data to aid in rapid access. Unfortunately, these methods
have not been added to the format and API specification. As a



result, we advocate and evaluate an alternative approach in
which it is possible to compute and associate with output
simple data characteristics, an example being max and min
values for an array being output, so that scientists can rapidly
decide upon the value of further or immediately processing this
data. Further, to control or eliminate the additional overhead
potentially introduced by the associated computations, there
is flexibility in ‘where’ and ‘when’ data characteristics are
computed: immediately associated with output, in a data
staging area (i.e., on compute nodes), in an IO Graph [3]
as part of additional processing as data flows to disks or
other destinations, and finally, by metabots [4] when data
is already stored on disk. Such operations could even be
performed in a traditional workflow system (e.g., Kepler [5],
Pegasus [6], or DagMAN [7]) as part of more complex data
processing actions. Our current implementation performs data
characterization on compute nodes, with minimal impact on
IO performance. The data characterizations (e.g., statistical
measures) are stored in the same file as the actual output data,
but end users can also place them into secondary files, in order
to avoid having to load and scan, say, multiple tapes on a tape
system like HPSS [8] to assess the value of data to a certain
computational or analysis action.

With current and next generation high performance ma-
chines, the probability is high that one of many nodes per-
forming data output fails to complete that action. While the
loss of that node’s data may be acceptable to the scientific
application, the failure of all nodes to complete their output
due to a single node’s problems is not. Instead, data output
should be implemented to be robust to failures, adopting
principles from other areas of Computer Science (e.g., consider
the Google file system [9]). In response to these needs, we
have implemented the BP file format as part of ADIOS, the
adaptable IO system [10]. Analogous to proxy processes in
other systems, the idea of the BP ‘proxy’ data format is to
act as an intermediate data format used during data output
and initial processing (e.g., the aforementioned lightweight
data characterization). We call BP an intermediate format
because typically, converters will be applied to BP files so
that subsequent data analysis and storage can leverage the
extensive tool chains existing for popular formats like HDF-
5 and NetCDF. This paper evaluates the performance of an
HDF-5 converter as part of an output operation.

To summarize, this paper makes the following contributions:

1) use of delayed consistency and other techniques for
enhanced parallelism, supported by a high level API for
IO;

2) lightweight methods for data characterization integrated
into the process of data output;

3) introduction of an ‘intermediate file format’ to store raw
data and its characterizations in ways resilient to node
failures; and

4) compatibility with common file formats like HDF-5 and
NetCDF.

The rest of the paper is organized as follows. Section II

describes related work. Section III contains an architectural
description. Section IV has performance results. Conclusion
and future work appear in Section V, followed by references.

II. RELATED WORK

Related work exists in three areas: relaxed consistency
systems, data indexing, and IO APIs.

Delayed consistency has previously been studied for file
systems. For example, the Lightweight File Systems [11]
project at Sandia Labs has stripped down POSIX semantics to
a core of authentication and authorization affording layering
of other semantics, like consistency, on an as-needed basis.
Other file systems like the Serverless File System [12] have
distributed metadata weakening the immediate consistency
across the entire network of machines. NFS [13] relies on
write-back local caches limiting the globally consistent view
of the file system to the last synchronization operation. Our
work considers the use of delayed consistency within single,
large-scale files, the intent being to ‘fix them up’ whenever
possible without inhibiting the performance of the petascale
application.

Efficient techniques for indexing HDF-5 files are offered by
FastBit [1], which uses a bitmap to indicate the presence of
different values or value ranges within a given data element.
PyTables [2] extends this concept to use a traditional rela-
tional database as a full content index. Unfortunately, these
approaches have not been integrated into the base HDF-5
system, perhaps because of potential performance penalties
when adding rich indices to large-scale files. Such penalties
are our principal motivation for advocating simple, lightweight
data characterization rather than full indexing methods in the
BP intermediate file format.

While offering rich tool chains, there have always been
scalability challenges for the NetCDF and HDF APIs and
file formats. For terascale machines, such challenges were
successfully addressed by moving from serial to parallel APIs.
In fact, in many cases, the performance of parallel HDF-5 or
NetCDF API has been exemplary [14]. However, additional
options will have to be explored for petascale machines (and
beyond), in part because of the high costs of the collective
IO operations required for consistency enforcement. Such
enforcement is necessary for providing a single coherent view
of the globally distributed file data. We believe that the delayed
consistency approach can be used to incur these costs so as to
not inhibit parallel program performance.

As with our IO system, ADIOS, the ADIO layer of MPI
provides some facility for hiding the underlying hardware
and software environment from application codes, to provide
portability and insulation from these details. However, since
the MPI-IO API has explicit semantics exposed to the scien-
tific code, certain operations, like collective writes, cannot be
changed without impacting the host code. Our approach takes
the further step of abstracting away details like coordination
for collective operations thereby giving the implementation
layer the flexibility to employ whatever techniques and fea-
tures are available on a given platform without impacting host



sources.

III. SOFTWARE ARCHITECTURE

A. Architecture of ADIOS Layer

The ADIOS layer show in Figure 1 has several important
characteristics that help us attain portable and scalable imple-
mentations of delayed consistency, lightweight data character-
ization, and output resilience. One such characteristic is that
ADIOS hides all consistency-related functions of lower level
APIs by moving them into metadata specifications located in
an external XML file. The file selects for each IO group, the IO
method to be used with the intent being to flexibly choose IO
methods to best match the IO patterns of certain code output
actions (e.g., restart files vs. intermediate results) and local
machine performance characteristics. IO methods also include
the aforementioned lightweight data characterization, where
currently, the only method offered is one that immediately
upon data output computes simple characteristics like mix/max
array values. Future work will examine alternative methods
that place such computations at different ‘locations’ in or
outside the IO path. Finally, the BP intermediate file format’s
current implementation is designed to maximize parallel out-
put performance while also containing sufficient information
to (later) validate data consistency.

Fig. 1. ADIOS Architecture

Our delayed internal file consistency implies synchroniza-
tion only at the start and end of each IO operation. As a
result, per node variations in process performance and/or in
messaging delays experienced by consistency operations are
avoided. The actual delay incurred corresponds to the longest
total IO time for any single process rather than the sum of
the longest times for any process for each step in the entire
IO action. Further, by not exposing the actual calls made to
the science code, end users can freely choose between using a
fully consistent parallel API (e.g., during code development)

vs. our delayed consistency methods (e.g., during high end
production runs). Similarly, users can first employ MPI-IO
or POSIX IO and then convert from the BP format to either
HDF-5 or NetCDF, as needed. All such choices simply entail
changing one entry in the ADIOS XML configuration file.

Our principal motivation for associating lightweight data
characterization with output actions is to improve scientists’
productivity, which is being reduced by the need to move
across wide area links the ever larger datasets produced by
petascale codes. Data characterization affords them with the
opportunity to quickly inspect output data, to assess whether
such movements are important before performing them. We
term such actions data characterization because they can be
user-specified and need not be complete, thereby avoiding
the known high overheads of data indexing like that used by
FastBit and PyTables. Further, entries for data characterization
are made default parts of the BP intermediate file format, much
like ‘attributes’ in other systems [15], so that end users need
not be concerned with format changes or updates when data
characterizations are changed.

As our primary research examples have all been write
intensive science codes, we have focused our initial work
at delivering the best possible write performance while still
affording good read performance. We collect sufficient infor-
mation during the write operations to enable good performing
read operations, but we have not spent any time optimizing
this portion of the code. Additional techniques for scalable,
high performance reading are likely necessary and partially
discussed in the future work section.

B. BP Architecture

The BP file format was specifically designed to support
delayed consistency, lightweight data characterization, and
resilience. The basic file layout is shown in Figure 2.

Fig. 2. BP File Layout

Each process writes its own output into a process group slot.
These slots are variably sized based on the amount of data
required by each process. Included in each process output are
the data characteristics for the variables. For performance, we
are investigating the advantages of padding these slots to file
system whole stripe sizes. These and other size adjustments are
possible and centrally managed during the file open process.
This flexibility will be required to get the best possible
performance from an underlying transport and file system.

The three index sections are stored at the end for ease of
expansion during append operations. Their manipulation is
currently managed by the root process of the group performing
IO. The overhead of these indices is acceptably small even
for a large number of processes. For example, for 100,000
processes and a large number variables and attributes in all
process groups, such as 1000, the total index size will be on
the order of 10 MB. Given the total size of the data from an



output operation of this size, 10 MB constitutes little more
than a rounding error. Since these are at the end of the file,
we reserve the last 28 bytes of the file for offset locations and
for version and endian-ness flags.

Delayed consistency is achieved by having each process
write independently with sufficient information to later vali-
date that the consistency was not violated. While the repli-
cation of this data may not seem desirable, consider the
ramifications of a three orders of magnitude performance
penalty for instead, maintaining a single copy or consider the
potential that the single copy being corrupted renders the entire
output useless. We have measured the overhead per process
to be on the order of a few hundred bytes for a few dozen
variables. This cost, we believe, is well worth the time savings
and greater resilience to failure.

Data characteristics are replicated into the indices stored at
the end of the file. As mentioned above, the location of the
index is stored at a known offset from the end of the file,
thereby making it easy to seek to the index. Since the index
is internally complete and consistent, it can be separated out
and queried to determine if the associated data contains the
desired features.

The BP format addresses resilience in two ways. First, once
the initial coordination to determine file offsets is complete,
each process can output its entire data independently and close
the local connection to the file. This will commit the local data
to storage, which constitutes some level of safety. Afterwards,
ADIOS gathers all of the index data for each single output to
the root process of the output operation, merges it together,
and writes it to the end of the file as a footer. This merging
operation is strictly appending various linked lists together
making it efficient to perform. Second, the replicated metadata
from each process in the footer gives a list of offsets to where
each process group was written. Should this fail, it is possible
to linearly search the file and determine where each process
group begins and ends.

IV. EXPERIMENTAL EVALUATION

Technical evaluations demonstrate the following. First, we
discuss our practical experiences with the Chimera supernova
code and its IO. We also identify the reasons for the existence
of orders of magnitude differences in performance when
using alternative methods for IO. Second, we demonstrate
the lightweight nature of data characterization, by comparing
the times taken to collect base data characteristics against
those experienced by external indexing schemes and by a full
data scan from a local disk. Finally, we discuss how the BP
file format and the ADIOS API jointly achieve resilience to
failures.

Evaluations are performed on two different machines: (1)
Jaguar, the Cray XT4 system at Oak Ridge National Labora-
tory, and (2) Ewok, the Infiniband and Linux based end-to-end
cluster at ORNL.

A. Delayed Consistency and Abstracted API
We evaluate the Chimera supernova code with weak scaling

using both the native HDF-5 calls used in that code vs.

TABLE I
PARALLEL HDF-5

Parallel HDF-5
Function # of calls Total Time (sec)
write 144065 33109.67
MPI Bcast 314800 12259.30
MPI File open 2560 325.17
H5P, H5D, etc. – 8.71
other – 60

our ADIOS calls for POSIX, for independent MPI-IO, and
for collective MPI-IO. Results appear in Figure 3. The two
most important items to notice in the graph are (1) that
the parallel HDF-5 calls no longer scale linearly beyond
2,048 processes and (2) that the performance difference for
16K processes is three orders of magnitudes when compared
with POSIX IO. We note that these runs use parallel HDF-
5 tuned to use independent MPI-IO as the transport and all
recommended performance options are enabled, based on the
recommendations by IO experts at ORNL.

Fig. 3. Chimera Weak Scaling

A detailed profile of the HDF-5 vs. ADIOS calls is attained
for a 512 process run. The tables below are the total time
spent in all processes on each operation. Three key differences
are apparent in Tables I and II. First, ADIOS does a cascaded
MPI Open call. The real cost of the open operation is the sum
of the MPI File open and the MPI File recv. Even combined,
they are less than the parallel open performed by HDF-5. The
second and more striking is the number of writes and the
time spent performing them. The third and most important for
our delayed consistency argument is the MPI Bcast calls to
enforce consistency. ADIOS performance is improved by its
ability to alter how the open operation is performed, buffering
the write commands to perform larger, less frequent calls, and
not requiring the broadcasts for consistency checking.

Briefly, the conversion time for a BP file generated from an
8192 process run into an HDF-5 format is only 117 seconds.

A more complete discussion of these results will appear in
the final version of this paper. The final version of this paper



TABLE II
ADIOS INDEPENDENT MPI-IO

ADIOS Independent MPI-IO
Function # of calls Total Time (sec)
write 2560 2218.28
MPI File open 2560 95.80
MPI Recv 2555 24.68
other – 65

will also describe (1) the performance impact of collecting
the data characteristics during the IO process and compare
that against both the worst case file scan and one or more of
the various indexing prototypes available for HDF-5, and

(2) experiments that simulate different kinds of failures and
their resulting impacts on output performance.

V. CONCLUSIONS AND FUTURE WORK

This paper demonstrates the utility of three basic ideas.
First, it shows that the use of delayed consistency methods
applied to the internals of large-scale files can result in up to
three orders of magnitude performance improvements in IO on
petascale machines. Second, by providing ‘nearly free’ data
characterization as part of the base API, common questions
like when a value or array reaches some threshold value can
be answered without analyzing all of the output data. This aids
both (1) in selecting which data to analyze from potentially
slow storage like a tape library and also (2) in preserving the
use of expensive analysis resources for the data most relevant
to the scientific question at hand. Finally, resilience is achieved
by replicating metadata to all process outputs. By using a
footer index with replicated data from the process groups
rather than a header, append operations are facilitated and we
avoid relying on centralized metadata for file correctness.

REFERENCES

[1] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel, “Hdf5-
fastquery: Accelerating complex queries on hdf datasets using fast
bitmap indices,” in In SSDBM, 2006, pp. 149–158.

[2] H.-. P. Tables, “http://www.carabos.com/docs/opsi-indexes.pdf.”
[3] P. M. Widener, M. Wolf, H. Abbasi, M. Barrick, J. Lofstead,

J. Pullikottil, G. Eisenhauer, A. Gavrilovska, S. Klasky, R. Oldfield,
P. G. Bridges, A. B. Maccabe, and K. Schwan, “Structured streams:
Data services for petascale science environments,” University of New
Mexico, Albuquerque, NM, Tech. Rep. TR-CS-2007-17, November
2007. [Online]. Available: http://www.cs.unm.edu/ treport/tr/07-11/Peta-
Scale.pdf

[4] P. M. Widener, M. Barrick, J. Pullikottil, P. G. Bridges, and A. B.
Maccabe, “Metabots: A framework for out-of-band processing in large-
scale data flows,” in Proc. 2007 International Conference on Grid
Computing (Grid 2007), Austin, Texas, September 2007.

[5] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and
the kepler system: Research articles,” Concurr. Comput. : Pract. Exper.,
vol. 18, no. 10, pp. 1039–1065, 2006.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Sci. Program., vol. 13, no. 3, pp.
219–237, 2005.

[7] G. Malewicz, I. Foster, A. Rosenberg, and M. Wilde, “A tool for prior-
itizing dagman jobs and its evaluation,” High Performance Distributed
Computing, 2006 15th IEEE International Symposium on, pp. 156–168,
0-0 2006.

[8] R. W. Watson and R. A. Coyne, “The parallel i/o architecture of the
high-performance storage system (hpss),” in MSS ’95: Proceedings of
the 14th IEEE Symposium on Mass Storage Systems. Washington, DC,
USA: IEEE Computer Society, 1995, p. 27.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[10] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible
io and integration for scientific codes through the adaptable io system
(adios),” in CLADE 2008 at HPDC. Boston, Massachusetts: ACM,
June 2008.

[11] R. Oldfield, L. Ward, R. Riesen, A. Maccabe, P. Widener, and T. Korden-
brock, “Lightweight i/o for scientific applications,” Cluster Computing,
2006 IEEE International Conference on, pp. 1–11, 25-28 Sept. 2006.

[12] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang, “Serverless network file systems,” ACM Trans.
Comput. Syst., vol. 14, no. 1, pp. 41–79, 1996.

[13] NFS, “http://www.ietf.org/rfc/rfc3010.txt.”
[14] W. Yu, J. Vetter, and H. Oral, “Performance characterization and

optimization of parallel i/o on the cray xt,” Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, pp.
1–11, April 2008.

[15] F. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener, “Efficient
wire formats for high performance computing,” in In Proceedings of
Supercomputing 2000, 2000.

VI. ACKNOWLEDGEMENTS

This work was funded in part by Sandia National Laborato-
ries under contract DE-AC04-94AL85000, a grant from NSF
as part of the HECURA program, a grant from the Department
of Defense, a grant from the Office of Science through the
SciDAC program, and the SDM center in the OSCR office.


