

CUG 2008 Proceedings 1 of 8

Adaptive IO System (ADIOS)

Chen Jin, Scott Klasky, Stephen Hodson, Weikuan Yu

(Oak Ridge National Laboratory)

Jay Lofstead, Hasan Abbasi, Karsten Schwan, Matthew

Wolf (Georgia Tech)

Wei-keng Liao, Alok Choudhary(Northwestern

University)

Manish Parashar, Ciprian Docan, Rutgers University.

Ron Oldfield (Sandia National Laboratories)

ABSTRACT:ADIOS is a state of the art componentization of the IO system that has

demonstrated impressive IO performance results on the Cray XT system at ORNL. ADIOS

separates the selection and implementation of any particular IO routines from the

scientific code offering unprecedented flexibility in the choices for processing and storing

data. The API was modelled on F90 IO routines emphasizing simplicity and clarity using

external metadata for richness. The metadata is described in a stand-along XML file that is

parsed once on code startup and determines what IO routines and parameters are used by

the client code for each grouping of data elements generated by the code. By employing

this API, a simple change to an entry in the XML file changes the codes to use either
synchronous MPI-IO, collective MPI-IO, parallel HDF5, pnetcdf, NULL (no output), or

asynchronous transports such as the Rutgers DART implementation and the Georgia Tech

DataTap method. Simply by restarting the code, the new IO routines selected in the XML

file will be employed. Furthermore, we have been defining additional metadata tags to

support in-situ visualization solely through changes in the XML metadata file. The power

of this technique is demonstrated on the GTC, GTC_S, XGC1, S3D, Chimera, and Flash

codes. We show that when these codes run on a large number of processors, they can

sustain high I/O bandwidth when they write out their restart and analysis files.

KEYWORDS: I/O, componentization

1. Introduction

Massive parallel applications running on the next

generation supercomputers using 100,000s of cores face

severe challenges in IO and data management. The well-

known performance and the scalability gap between the

computation and the I/O components are enlarging;

especially when the trend to many –core architectures

further intensifies the load and the contention level on the

I/O stack. To overcome these problems, we are building a

componentization of the IO layer, the Adaptive IO system

(ADIOS), to take the implementation of the IO layer away

from the application scientist
Although there are quite a few application

programming interfaces (API) such as parallel NetCDF

and parallel HDF5, which can deal with large data set

storage and access, none of them can prove the best
performance for all the different computer architectures

and file systems. Researchers find that they often get good

performance on a limited number of cores, but poor

performance once they scale up to a larger amount of

cores. Furthermore, they also find that their solution with

one technology works well with one architecture, but

breakdown on other machines. There are strategies that

researchers can reduce this performance impact, but

researchers who code in HDF5 are locked into the

performance of this implementation, and can waste a

significant amount of time in IO when HDF5 performs
poorly.

CUG 2008 Proceedings 2 of 8

The scientific codes sometimes consist of a lot of

small read/write statements for debug, analysis or

annotations. These small IO processes have been proven

improper and dramatically affect the IO performance for

large-scale scientific simulations. The ADIOS APIs

transparently buffer small data to writes or reads so that
only large chucks of data block are read/written to disk.

Application programmers can avoid user this buffer in

ADIOS, but the default is to use this.

Another important factor driving the design of

ADIOS is real time monitoring and analysis of large scale

simulations. Separating the transport layer from APIs

allows programmers to reroute the data flow from disk to

any visualization/analysis tools, so that the simulation

results can be monitored and debugged on the fly, as well

as actively monitor runs which run amok. Such

monitoring feature implies the need for backend dataflow

engines, such as a scientific workflow system. With the
advantageous componentization of ADIOS, an alternative

method for integrating a workflow can be easily switched

to by modifying the XML configure file.

Conventionally, all of this data must be written in the

code, which involves placing these statements inside the

code. ADIOS is able to extract the metadata, variable

dimensions and types out of the source code into an

external configuration file, therefore the original scientific

application only need to be modified and verified once by

adding ADIOS APIs. The further modification and

performance testing can be achieved by only changing the
external configure file. To separate metadata away from

source code helps the maintenance of the scientific

application in that the authors and community are

reluctant to redesign and change the code except for the

extreme performance requirements.

To provide the broad community of application

scientists with a high-performance, easy-to-use interface

for I/O processing, we have defined an alternative high-

level API with external XML configuration file, allowing

for programming without bothering with the details of

transport layer implementation. ADIOS is an IO

componentization, which allows for fast and scalable IO
on small clusters and large petascale supercomputers.

Moreover, it provides the flexibility of switching different

transport methods by only modifying the xml file without

verification of the source code. Last but not the least,

ADIOS can be used to help couple codes using both file

and memory based methods. In addition, a new ADIOS

APIS can be extended for code coupling in ADIOS,

which will also send the metadata over to the workflow

automation system.

2. ADIOS API’s

ADIOS I/O in MPI starts with functions familiar to

users of standard “language” I/O or libraries. MPI also

has additional features necessary for performance and

portability. In this section we focus on the ADIOS

counterparts of opening and closing files, as well as
read/writing contiguous blocks of data from/to them. At

this level the main feature we show is how ADIOS can

conveniently express read/write operations in terms of

group. Later on in section 4, we can show how easy it is

to implement parallelism for these operations. The

following programming example illustrates how to write

an integer array and a double-precision array with size of

dimx into file called “test.bp”, which is organized in our

native tagged binary file format. BP, which stands for

binary packed, allows users to include rich metadata

associated with the block of binary data. The

corresponding XML configuration file required by this
program is demonstrated in the next section.

/*example of parallel MPI write into a single file */
#include ”adios.h”
#include <stdio.h>

int main(int argc, char *argv[])
{
 int i, myrank, dimx, *X;
 double *Y;
 dimx=100;
 X=(int*)malloc(sizeof(int)*dimx);
 Y=(double*)malloc(sizeof(double)*dimx);
 for(i=0;i<dimx;i++)

 {
 X[i]=i+myrank*dimx;
 Y[i]=2.5*X[i];
 }
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(mpi_comm_world,&myrank);

adios_init(“config.xml”,mpi_comm_world,
mpi_comm_self,mpi_info_null);

adios_get_group(&grp_id,”Potential”);
adios_open(&buf_id,grp_id,“data.bp”);
adios_write(buf_id,”dimx”,&dimx);
 adios_write(buf_id,”X”,X);
 adios_write(buf_id,”Potential”,Y);
adios_close(buf_id);
adios_finalize(myrank);
MPI_Finalize();

free(Y);free(X);
}

As shown in this example, a pair of adios_init

and adios_finalize should be called between the

actual paired mpi_init and mpi_finalize. Before

any adios operation starts, adios_init is required to

load the XML configuration file creating internal

representations of various data types and defining the

methods used for writing. Presently, there are additional

parameters to define various MPI elements that are

supposed to be transparently compatible between Fortran

CUG 2008 Proceedings 3 of 8

and C, but are not. Similar to mpi_finalize,

adios_finalize releases all the resources allocated

by adios and guarantee all the remained adios operations

be finished before the code exits. After the basic adios

initialization, adios_get_group gets called to retrieve

a handle for the group with the name of “Potential”,

which should be specified in the XML configuration file.

The unique feature of adios is the group implementation,

which is constituted by a list of variables and associated

with individual transport methods. The flexibility allows

the applications to make the best use of the file system

according to its own different IO patterns.

The ADIOS function corresponding to fopen is

called adios_open. Let us consider the arguments one
by one.ADIOS_open(io_handle,group_handle, filename).

The first argument is an IO handle. Different from file

descriptor, this IO handle only prepare the data type for

the subsequent calls to write data using io_handle. The
second argument is a string representing the name of file,

as in fopen. As the last argument, we pass the address of

the ADIOS_FILE variable, which the adios_open will fill

in for us. adios_close() triggers the building of the buffer

for transfer and then returns control back to the caller. At

this point, all of the data is copied and will be sent as-is

downstream. If the handle is opened for read, this will

cause the fetch of the data, parse it, and populate it into

the provided buffers. This is currently hard-coded to use

posix io calls.

Adios_write(io_handle,fieldname,&var) submit a
data element for writing and associate it with the given

filename for this type. This does not actually perform the

write. Scalars are duplicated, vectors are referenced. Any

changed to vectors before adios_close is called will be

reflected in the written data. In the same way, adios_read

(io_handle, field_name, &var) - submit a buffer space

(var) for reading a data element into. This does NOT

actually perform the read. Actual population of the buffer

space will happen on the call to adios_close()

As presented in the program, ADIOS provides the

application programmers easy-to-use, rich-featured APIs.
In the near future, we will implement ADIOS_gwrite(),

which will replace all the tedious adios_write function

calls and offer cleaner interface for scientists and

programmers.

3. ADIOS XML File Description

By abstracting metadata, data type and dimension

from source code into XML file, it not only gives users

more flexibility to annotate the arrays or variables, but

also centralizes the description of all the data structures,

which in return allows IO componentization for different

implementation of transport methods. By cataloguing the

data types externally, we have an additional
documentation source as well as a way to easily validate

the write calls compared with the read calls without

having to decipher the data reorganization or selection

code that may be interspersed with the write calls. Once

nice feature of the XML name attributes s that they are

just strings. The only restrictions for their content are that

if the item is to be used in a dataset dimension; it must not

contain a comma and must contain at least one non-
numeric character. This is useful for putting expressions

as various array dimensions elements. The following

illustrates the corresponding XML configuration for the

example we demonstrated in the previous section.
<?xml version="1.0"?>
<adios-config host-language="C">
<adios-group name="Potential ">
<global-bounds dimension=”g_x” offset=”o_x”>

<var name="g_x" type="integer"/>
<var name="o_x" type="integer"/>
<var name="dimx" type="integer"/>
<var name="X" type="integer" dimension=”dimx”/>
<var name="P" type="double" dimension=”dimx”/>
<attribute name=”description” path=”/P” value=”the

potential value”/>
</global-bounds>

</adios-group>
<method priority="1" method="MPI-IO"

group="Potential"/>
<buffer size-MB="100" allocate-time="now"/>
</adios-config>

The main elements of the xml file format are of the

format <element-name attr1 attr2 …>. At a minimum, a

configuration document must declare adios-config

element. It serves as a container for other elements; as

such, it MUST be used as the root element. The expected

children in any order would be adios-group, method and

buffer.
The adios-group element represents a container for a

list of variables that share the common IO pattern; in this

case, we name it as Potential. Depending on the different

scientific application, the occurrence of adios-group can

be as many as needed.

Global-bounds are an optional nested element for

adios-group, which specifies the global space and offsets

within that space for the enclosed variable elements.

The nested var element for adios_group can be either

an array or a primitive data type, determined by the

dimension attribute provided.

The Attributes associated with var element is listed as
below:

 • path - HDF-5-style path for the element or path

to the

HDF-5 group or data item to which this attribute is

attached.

 • dimensions - a comma separated list of

numbers and/or names that correspond to integer var

elements to determine the size of this item

 • write - [optional] if it is set to “no”, then this is

an informational element not to be written intended for

either grouping or dataset dimension usage

CUG 2008 Proceedings 4 of 8

 • copy-on-write - [optional] if it is set to “yes”,

then this is var must be copied when it is provided rather

than caching a pointer.

The method element is used to specify the mapping

of an IO transport method to a data type including any
initialization parameters. There are two major attributes

required for the method element:

 • method - a string indicating a transport method

to use with the associated adios-group.

 • group - corresponds to an adios-group specified

earlier in the file.

The buffer element defines the attributes for internal

buffer size and creating time, which will apply to the

whole application.

Changing IO Without Changing Source: The method

element provides the hook between the adios-group and
the transport methods. Simply by changing the method

attribute of this element, a different transport method will

be employed. If more than one method element is

provided for a given group, they will be invoked in the

order specified. This neatly gives triggering opportunities

for workflows. To trigger a workflow once the analysis

data set has been written to disk, make two element

entries for the analysis adios-group. The first indicates

how to write to disk and the second will perform the

trigger for the workflow system. No recompilation,

relinking, or any other code changes are required for any
of these changes to the XML file.

4. ADIOS Methods

POSIX Method

The simplest method provided in ADIOS just does

binary POSIX IO operations. Currently, it does not

support shared file writing or reading and has limited

additional functionality. The main purpose for this IO

method is to provide a simple way to migrate a one file

per process IO routine to ADIOS and test the results

without introducing any complexity from MPI-IO or other

IO methods. Performance gains just by using this

transport method are likely due to our aggressive
buffering for better streaming performance to storage.

Additional features may be added to this transport

method over time. Most likely is a new transport method

with a related name, such as POSIX-ASCII, would be

provided to perform IO with additional features. The

POSIX-ASCII example would write out a text version of

the data formatted nicely according to some parameters

provided in the XML file.

MPI-IO Method

Many large-scale scientific simulations generate a

large amount of data, spanning thousands of files or
datasets. Allowing the use of MPI-IO to reduce the

amount of files will be helpful to the data management,

storage and access.

The original MPI-IO method was developed by Steve

Hodson based on his experiments with generating the

better MPI-IO performance on the Jaguar machine at

ORNL. Many of his insights have helped us achieve
excellent performance on both the Jaguar XT4 machine

and on theother clusters, suchas the Ewok end-to-end

cluster. Some of the key insights we have taken advantage

of include artificially serialized MPI_File_open calls and

additional timing delays that can achieve reduced delays

due to metadata server (MDS) conflicts on the attached

Lustre storage system.

The adapted code takes full advantage of NxM

grouping through the coordination-communicator. This

will generate one file per coordination-communicator

with the data stored sequentially based on the process

rank within the communicator. Figure 1 presents in the
example of GTC code, 32 processes inthe same Toroidal

zonewrite to one integrated file. Additional serialization

of the MPI_File_open calls is done using this

communicator as well since each process may have a

different size data payload. Rank 0 calculates the size it

will write, calls MPI_File_open, and then sends its size to

rank 1. Rank 1 listens for the offset to start from, adds its

calculated size, does an MPI_File_open, and sends the

new offset to rank 2. This continues for all processes

within the communicator. Additional delays for

performance based on the number of processes in the
communicator and the projected load on the Lustre MDS

can be used to introduce some additional artificial delays

that ultimately reduce the amount of time the

MPI_File_open calls take by reducing the bottleneck at

the MDS.An important fact to be noted is that individual

file pointers are retrieved by MPI_File_openso that each

process has its own file pointer for file seek and other I/O

operations.

Figure 1: meta-data server friendly approach -- offset the

create/open in time

While we have built this mainly with Lustre in mind

due to it being the primary parallel storage service we

CUG 2008 Proceedings 5 of 8

have available, other file system specific tunings are

certainly possible and fully planned as part of this

transport method system. For each new file system we

encounter, a new transport method implementation tuned

for that file system, and potentially that platform, can be

developed without impacting any of the scientific code.
This transport method is the most mature, full

featured, and well tested. We recommend anyone creating

a new transport method study this one as a model of full

functionality and some of the advantages that can be

made through careful management of the storage

resources.

MPI-CIO Method

MPI-IO defines a set of portable programming

interfaces for multiple processes concurrent access to

shared files [1]. It is often used to store and retrieve

structured data in their canonical order. The interfaces are

split into two types: collective I/O and independent I/O.
Collective functions require all processes to participate.

Independent I/O, in contrast, requires no process

synchronization.

Collective I/O enables process collaboration to

rearrange I/O requests for better performance [2,3]. The

collective I/O method in ADIOS first defines MPI

fileviews for all processes based on the data partitioning

information provided in the XML configuration file.

ADIOS also generated MPI-IO hints, such as data sieving

and I/O aggregators, based on the access pattern and

underlying file system configuration. The hints are
supplied to the MPI-IO library for further performance

enhancement. The syntax to describe the data-partitioning

pattern in the XML file uses <global-bounds
dimensions offsets> tag, which defines the global array
size and the offsets of local subarrays in the global space.

The global-bounds element contains one or more

nested var elements each specifying a local array that

exists within the described dimensions and offset.

Multiple global-bounds elements are permitted and

strictly local arrays can be specified outside the context of

the global-bounds element.

As with other data elements, each of the attributes of

the global-bounds element is provided by the adios_write

call. The dimensions attribute is specified by all

participating processes and defines how big the total

global space is. This value must agree for all nodes. The
offset attribute specifies what offset into this global space

the local values are addressed. The actual size of the local

element is specified in the nested var element(s). For

example, if the global bounds dimension were 50 and

offset were 10, then the var(s) nested within the global-

bounds would all be declared in a global array of 50

elements with each local array starting at an offset of 10

from the start of the array. If more than one var is nested

within the global-bounds, they share the declaration of the

bounds, but are treated individually and independently for

data storage purposes.

MPI-AIO Method

The initial implementations of the asynchronous

MPI-IO method (MPI-AIO) is patterned after the MPI-IO

method. Scheduled meta-data commands are performed
with the same serialization of MPI_Open calls as given in

Figure 1.

The degree I/O asynchronicity will depend on several

factors. First, the ADIOS library must be built with

versions of MPI that are bullt with ansynchronous I/O

support through the MPI_File_iwrite, MPI_File_iread,

and MPI_Wait calls. If asynchronous I/O is not available,

these calls revert to synchronous (read blocking),

behaviour, identical to the MPI-IO method described in

the previous section.

Another important factor is the amount of ADIOS

buffer space available. In the MPI-IO method, data is
transported and ADIOS buffer allocation is reclaimed for

subsequent use with calls to adios_close(). In the MPI-

AIO method, the “close” process can be deferred until the

buffer allocation is actually needed for new data.

However, if the buffer allocation is exceeded, the data

must be synchronously transported before the application

can proceed.

 The deferral of data transport is key to effectively

scheduling ansynchronous I/O with the computation, to be

implemented in version 2.0. In ADIOS version 1.0, the

application explicitly signals that data transport must be
complete with intelligent placement of the adios_close()

call to indicate when I/O must be complete. Later versions

of ADIOS will perform I/O between

adios_begin_calculation andadios_end_calculation calls,

and complete I/O on adios_end_interation calls.

DataTap Method

DataTap is an asynchronous data transport method

built to ensure very high levels of scalability through

server-directed I/O[7,8]. It is implemented as a request-

read service designed to bridge the order of magnitude

difference between available memory on the I/O partition

compared to the compute partition. We assume the
existence of a large number of compute nodes producing

data (we refer to them as DataTap clients) and a smaller

number of I/O nodes receiving the data (we refer to them

as DataTap servers).

ADIOS

Stream

Manager

DataTap Client

Data

buffer

Performance

buffer

Stream Manager

DataTap
Receive

data

buffers

DataTap Server

RDMA

Read

RDMA

Write
Request

buffer

Disk

output

EVPath

output

Compute Node

Application

Figure 2: Datatap Architecture

CUG 2008 Proceedings 6 of 8

Error! Reference source not found.describes the

DataTap architecture. Upon application request the

compute node marks up the data in PBIO [9] format and

issues a request for a data transfer to the server. The

server queues the request until sufficient receive buffer

space is available. The major cost associated with setting
up the transfer is the cost of allocating the data buffer and

copying the data. However, this overhead is small enough

to have little impact on the overall application run-time.

When the server has sufficient buffer space, an RDMA

read request is issued to the client to read the remote data

into a local buffer. This data is then written out to disk or

transmitted over the network as input for further

processing in the I/O Graph.

We used the Gyrokinteic Turbulence Code, GTC[]

as an experimental testbed for the DataTap transport.

GTC is a particle-in-cell code for simulating fusion within

tokamaks, and it is able to scale to multiple thousands of
processors. In its default I/O pattern, the dominant I/O

cost is from each processor writing out the local particle

array into a file. Asynchronous I/O reduces this cost to

just a local memory copy, thereby reducing the overhead

of I/O in the application.

DART Method

DART is an asynchronous I/O transfer method within

ADIOS that enables the low-overhead high-throughput

data extraction from a running simulation. The design of

DART consists of two main components, (1) DARTClient

module, and(2) DARTServer module. Internally, DART
system uses Remote Direct Memory Access (RDMA) to

implement the communication, coordination and data

transport mechanism between the DARTClient and the

DARTServer modules.

The DARTClient module is a light library that

implements the asynchronous I/O API. It integrates with

the ADIOS layer by extending the generic ADIOS data

transport hooks. It uses the ADIOS layer features to

collect and encodethe data written by the application into

a local transport buffer. Once it has collected data from

the simulation, DARTClient notifies the DARTServer

through a coordination channel that it has data available
to send zout. DARTClient then returns and allows the

application to continue its computations, while data is

asynchronously extracted by the DARTServer.

The DARTServer module is a stand-alone service

that runs independently from the simulation. It typically

runs on dedicated I/O nodes, and transfers data from the

DARTClients and to remote sites, e.g., a remomte a

storage system such as the Luster file system. One

instance of the DARTServer can service multiple

DARTClients instances in parallel. Further, the server can

run in cooperative mode, i.e., multiple instances of the
server cooperate to service the clients in parallel and to

balance load. The DARTServer receives notification

messages from the clients, schedules the requests and

initiates the data transfers in parallel from the clients. The

server schedules and prioritizes the data transfers while

the simulation is computing in order to overlap data

transfers with computations, to maximize data throughput,

and to minimize the overhead on the simulation.

NULL Metod
The ADIOS NULL method allows users to quickly

comment out a ADIOS group, by changing the transport

method to “NULL”. This allows users to test the speed of

the routine, by timing the output against no IO. This is

especially useful when working with asynchronous

methods which have indeterminate amount of time.

Another useful feature of this IO is that quickly allows

users to also test out the system, and see if bugs are

possibly caused by the IO system, or perhaps by other

places in the codes.

5. ADIOS in codes

ADIOS in GTC
GTC fusion code provided a variety of different

outputs with varying frequency and sizes. From an IO

complexity perspective, GTC has seven different groups

of output in five categories, each being handled

differently. These five categories are restart, tracking,

dataout3D, analysis, and diagnosis output. Each of these

categories has different IO requirements based on their

output patterns. For instance, the large restart data needs

to be written as quickly as possible with some annotation.

To mitigate the runtime performance impact, it is written

infrequently. The analysis, tracking and output3D data,
while much smaller, needs to be written out to disk more

often. The diagnostic outputs are written very frequently,

but are little more than a few kilobytes per time step and

always only from the master processor. Therefore, each of

these output groups has different requirements for IO

performance, annotation and potential tool integration.

We also noted that some data was only written as a header

by the master process followed by the collection of the

payloads from all processors. The dissimilarity between

the header data and actual payload can be easily

differentiated by specifying different adios-group in XML

file. In addition, ADIOS provides the flexibility of
selecting how each of these different data groupings

performs IO simply by specifying the selected method for

each of these groups in the XML. It handles the different

sizes for the analysis array outputs through the use of var

names for array dimensions. Through the copy-to-write

feature in the XML file, we both note and handle the

transient nature of the data in the given pointer. This also

gives us the ability to take stack-based temporary values

and write them properly.

In GTC old restart IO, each MPI process writes/reads

a separate file, which is N to N IO complexity. If the new
version of ADIOS APIS with MPI-IO transport method,

npartdom (the number of processes in particle domain)

CUG 2008 Proceedings 7 of 8

MPI processes writes/reads in one integrated file. The

total number of files is reduced to mzetamax, shown as

below in Figure 3. In this manner, it not only allows each

plane has its own file, but is also convenient for

programmers to extract arbitrary plane instead of parsing

a big binary file if it is collected from all the process in
the communication world.

Figure 3 Gyrokinetic Toroidal Code Mesh Space

ADIOS in GTS
GTS is a general geometry model of the GTC code,

which has a systematic treatment of plasma rotation and

equilibrium EXB flow, realistic plasma profiles and

corresponding magnetohydrodynamic (MHD) equilibria.

They use a symmetry coordinate system to construct the

relatively regular mesh in real space for strongly shaped

toroidal plasmas, which facilitates straightforward

visualization.

There are two major sources of IO in this code, one

from the restarts, and the second is from the particle

diagnostics. Unlike GTC, GTS has developed a technique

to bin the particles in the code into a five dimensional
mesh. The size of the mesh is determined by how much

data can be stored and written to disk in a timely fashion.

The binning is rather cheap, and can be down in <0.01 of

the time in the code, but the IO generated from this can be

rather large. Realistic numbers for the mesh size can be

over 120GB, which much be written out every 60 seconds

for a realistic simulation. This data needs to be written out

approximately every other GTS timestep, and we need

approximately 2,000 timesteps written to disk to get

relevant physics generated from this output. This means

that one simulation, which last for 1.5 days can generate
over 200 TB of data in 1.5 days.

The other major change to GTS was switching out

the „fort.*” files to ADIOS output, which allows us to

place more metadata in the output.

ADIOS in Chimera

The Chimera supernova code provided new

challenges as compared with GTC. First, the IO was split

into fewer groups than GTC, but the groups were much

larger. There are only two groups in Chimera, but a total

of around 475 vars. Second, there were other IO

operations that generated different formats of data

previously output. Our asynchronous methods will take
advantage of this by collecting the output once and

processing it into multiple streams to storage with one in

the compact binary representation and others in the

various formatted text forms desired by the users.

By just changing the main restart IO to use ADIOS

with the POSIX transport method, we saw a 6.5%

reduction in wall clock time for identical runs between the
original version and our ADIOS version.

ADIOS in S3D

As a part of the efforts to provide a versatile I/O

middleware for scientific applications, we have ported the

I/O kernel of the combustion simulation program, S3D, to

the initial ADIOS middleware. The porting of the ADIOS

to S3D is rather straightforward with the close

resemblance of ADIOS interface to the POSIX interface.

Rougly speaking, there are three steps involved. In the

first step, ADIOS is initialized right after the S3D

program starts, i.e., after MPI_Init(). In the second step,

the bulk of the S3D I/O code has been replaced with
ADIOS I/O routines. An ADIOS configuration file that

describes the attributes of various S3D variables is also

created. This configuration file offers a great deal of

flexibility for ADIOS to choose among its I/O methods.

Currently, the POSIX I/O method is activated. Finally in

the third step, ADIOS support is finalized before the S3D

program reaches MPI_Finalize(). Timing profiles are

taken during the ADIOS initialization and finalization

steps. One thing to note is that, because S3D uses 8-byte

integers, the ADIOS package has been improved to

accommodate such scientific applications that make use
of variable size data types.

ADIOS in XGC

The XGC code is a Gyrokinetic Turbulence code to

understand the edge of the plasma. It is similar to the

GTC code, but deploys a full-f algorithm, compared to a

delta-f algorithm. This means that the total amount of

particles per cell will be much higher than the GTC code,

which uses a delta-f method. The simulations also run for

a longer amount of time than the GTC code, which

requires that the IO system be even more impervious to

problems.

ADIOS is currently integrated into the working
version of XGC, and has eleven ADIOS groups: restarts,

particle diagnostics, electron field diagnostics, ion field

diagnostic, 2D diagnostics, and various one dimensional +

time diagnostics. By changing all of the IO from XGC

(originally in netcdf, hdf5, binary files, and fort.* files),

we are able to unify the IO in this code to one single set of

API‟s. The initial performance from ADIOS in this code

looks encouraging, although we are waiting for full Cray

XT at ORNL to become available to truly test the system.

6. ADIOS Performance

The performance measurements we perform for
ADIOS are focused in two areas. First, we want to get the

CUG 2008 Proceedings 8 of 8

best performance possible out of a transport method to

storage. Our 20 GB/sec performance using MPI-IO to

Lustre on Jaguar demonstrates this. Second, reducing wall

clock time for jobs is our real measure for success. Only

by reducing this time will there be a real improvement in

terms of cost to users. Our initial Chimera without any
optimizations generated a 6.5% reduction in wall clock

time. Further optimizations will yield better performance

improvements. We have also evaluated the performance

up to 1024 processes for the S3D code, and have

demonstrated that ADIOS is able to achieve comparable

performance to the original S3D I/O implementation.

7. Conclusion

ADIOS is a componentization of IO layer. It has been

designed to be easy to program, and to be fast and

portable. By allowing users the flexibility to switch

between different IO implementations, we can help ensure

at least one method works properly on a new platform.
Currently, the GTC, GTS, XGC1, M3D-K, S3D, and

Chimera codes are planning to use ADIOS, since it‟s

promise is scalable portable performance. Each group will

most likely use different ADIOS methods to enhance their

own needs. Preliminary results in our suite of codes on

the Cray XT have shown an impressive 20GB/sec for

writing the data.

ADIOS 1.0 will be released in the fall of 2008, and

will be optimized for extremely fast writes. Most features

in ADIOS will continue to evolve. Some of the new

features which we will add to the features are group
writes, where users will be able to have just one write

statement in their code, and ADIOS will look at all of the

variables in the XML configuration file and then write out

all of the variables with the one write statement.

Another major enhancement that we are currently

working on is a header that allows for extremely efficient

writes, and allows us to be able to place an indexing table

in front of the file. At first, we will implement the

indexing, and later we will implement this as part of the

writing; allowing the code developer to choose if they

want to pay the cost to compute this as the writes are

occurring.
Another advantage of ADIOS is that it allows the

users to easily create large buffers for the write

statements. File systems, such as LUSTRE, can easily

take advantage of these large writes, allowing the users to

get very fast writes. ADIOS also contains APIs to help

schedule IO, allowing the asynchronous IO to only occur

during the computational phases of the simulation, and

not during the communication phase.

Currently ADIOS is not taking advantage of a

feedback mechanism but we envision that ADIOS will

take advantage of this in two central ways. First, we can
get feedback from the file system to find out if the

synchronous writes will be fast. If the file system can

quickly tell ADIOS that a restart should not be written,

then we can easily allow this, by placing annotations in

the XML file for this. We have already designed APIs

which can work to count iteration counts in the

simulation, and tell the system that certain data must be

written out in a given amount of timesteps. Likewise, we
can extend this to say, “write out restarts every 100

iterations +- 10. In this way, we can easily allow ADIOS

to try to write out the data when the disk system is not

performing other IO operations, thus minimizing the

amount of time required to write out the data.

8. Acknowledgments

The authors would like to thank the staff at

NCCS/ORNL for allowing us to run many test of the Cray

XT and Infiniband systems at ORNL. We would like to

author thank the code authors of GTC, GTS, XGC, S3D,

and Chimera for many useful discussions to help their IO

and help form ADIOS into a useful product.

9. References

 Message Passing Interface Forum. MPI-2: Extensions

to the Message Passing Interface, July 1997.

 J. del Rosario, R. Brodawekar, and A. Choudhary.

Improved Parallel I/O via a Two-Phase Run-time
Access Strategy. In the Workshop on I/O in Parallel
Computer Systems at IPPS ‟93, pages 56–70, April
1993.

 R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In the 7th Symposium on

the Frontiers of Massively Parallel Computation,
February 1999.

 Z. Lin, S. Ethier, T. S. Hahm, W. M. Tang, "Size

Scaling of Turbulent Transport in Magnetically
Confied Plasmas," Phys. Rev. Letters, vol. 88, 2002.

 C.S. Chang, Ku, M. Adams, F. Hinton, D. Keyes, S.

Klasky,W. Lee, Z. Lin, S. Parker, "Gyrokinetic
particle simulation of neoclassical transport in the
pedestal/scrape-off region of a tokamak plasma,"
Institute of Physics Publishing Journal of Physics:
Conference Series,pp. 87-91, 2006.

 W. Wang, Z. Lin, W. Tang, et al., “Global Gyrokinetic

Particle Simulation of turbulence and transport in
realistic tokamak geometry”,Institute of Physics
Publishing Journal of Physics: Conference Series, pp.
59-64, 2005.

 Seamons,K.,Chen,Y.,Jones,P.,Jozwiak,J.,andWinslett,
M., “Server-directed collectiveI/O in Panda”,
Proceedings of Supercomputing ‟95, San Diego, CA

 Kotz,D., “Disk-directed I/O for MIMD
multiprocessors”, ACM Transactions on Computer

Systems, pp. 41-74.

 Fabian E. Bustamante, Greg Eisenhauer, Karsten
Schwan, and PatrickWidener. Efficient wire formats

for high performance computing. InProceedings of the
2000 ACM/IEEE conference on Supercomputing
(CDROM), pp.39. IEEE Computer Society, 2000.

