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ABSTRACT:ADIOS is a state of the art componentization of the IO system that has 

demonstrated impressive IO performance results on the Cray XT system at ORNL. ADIOS 

separates the selection and implementation of any particular IO routines from the 

scientific code offering unprecedented flexibility in the choices for processing and storing 

data. The API was modelled on F90 IO routines emphasizing simplicity and clarity using 

external metadata for richness. The metadata is described in a stand-along XML file that is 

parsed once on code startup and determines what IO routines and parameters are used by 

the client code for each grouping of data elements generated by the code. By employing 

this API, a simple change to an entry in the XML file changes the codes to use either 
synchronous MPI-IO, collective MPI-IO, parallel HDF5, pnetcdf, NULL (no output), or 

asynchronous transports such as the Rutgers DART implementation and the Georgia Tech 

DataTap method. Simply by restarting the code, the new IO routines selected in the XML 

file will be employed. Furthermore, we have been defining additional metadata tags to 

support in-situ visualization solely through changes in the XML metadata file. The power 

of this technique is demonstrated on the GTC, GTC_S, XGC1, S3D, Chimera, and Flash 

codes. We show that when these codes run on a large number of processors, they can 

sustain high I/O bandwidth when they write out their restart and analysis files. 
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1. Introduction 

 
Massive parallel applications running on the next 

generation supercomputers using 100,000s of cores face 

severe challenges in IO and data management. The well-

known performance and the scalability gap between the 

computation and the I/O components are enlarging; 

especially when the trend to many –core architectures 

further intensifies the load and the contention level on the 

I/O stack. To overcome these problems, we are building a 

componentization of the IO layer, the Adaptive IO system 

(ADIOS), to take the implementation of the IO layer away 

from the application scientist  
Although there are quite a few application 

programming interfaces (API) such as parallel NetCDF 

and parallel HDF5, which can deal with large data set 

storage and access, none of them can prove the best 
performance for all the different computer architectures 

and file systems. Researchers find that they often get good 

performance on a limited number of cores, but poor 

performance once they scale up to a larger amount of 

cores. Furthermore, they also find that their solution with 

one technology works well with one architecture, but 

breakdown on other machines. There are strategies that 

researchers can reduce this performance impact, but 

researchers who code in HDF5 are locked into the 

performance of this implementation, and can waste a 

significant amount of time in IO when HDF5 performs 
poorly.  
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The scientific codes sometimes consist of a lot of 

small read/write statements for debug, analysis or 

annotations. These small IO processes have been proven 

improper and dramatically affect the IO performance for 

large-scale scientific simulations. The ADIOS APIs 

transparently buffer small data to writes or reads so that 
only large chucks of data block are read/written to disk. 

Application programmers can avoid user this buffer in 

ADIOS, but  the default is to use this. 

Another important factor driving the design of 

ADIOS is real time monitoring and analysis of large scale 

simulations. Separating the transport layer from APIs 

allows programmers to reroute the data flow from disk to 

any visualization/analysis tools, so that the simulation 

results can be monitored and debugged on the fly, as well 

as actively monitor runs which run amok. Such 

monitoring feature implies the need for backend dataflow 

engines, such as a scientific workflow system. With the 
advantageous componentization of ADIOS, an alternative 

method for integrating a workflow can be easily switched 

to by modifying the XML configure file. 

Conventionally, all of this data must be written in the 

code, which involves placing these statements inside the 

code. ADIOS is able to extract the metadata, variable 

dimensions and types out of the source code into an 

external configuration file, therefore the original scientific 

application only need to be modified and verified once by 

adding ADIOS APIs.  The further modification and 

performance testing can be achieved by only changing the 
external configure file. To separate metadata away from 

source code helps the maintenance of the scientific 

application in that the authors and community are 

reluctant to redesign and change the code except for the 

extreme performance requirements. 

To provide the broad community of application 

scientists with a high-performance, easy-to-use interface 

for I/O processing, we have defined an alternative high-

level API with external XML configuration file, allowing 

for programming without bothering with the details of 

transport layer implementation. ADIOS is an IO 

componentization, which allows for fast and scalable IO 
on small clusters and large petascale supercomputers.  

Moreover, it provides the flexibility of switching different 

transport methods by only modifying the xml file without 

verification of the source code. Last but not the least, 

ADIOS can be used to help couple codes using both file 

and memory based methods. In addition, a new ADIOS 

APIS can be extended for code coupling in ADIOS, 

which will also send the metadata over to the workflow 

automation system. 

 

 
 

2. ADIOS API’s 

ADIOS I/O in MPI starts with functions familiar to 

users of standard “language” I/O or libraries. MPI also 

has additional features necessary for performance and 

portability. In this section we focus on the ADIOS 

counterparts of opening and closing files, as well as 
read/writing contiguous blocks of data from/to them. At 

this level the main feature we show is how ADIOS can 

conveniently express read/write operations in terms of 

group. Later on in section 4, we can show how easy it is 

to implement parallelism for these operations. The 

following programming example illustrates how to write 

an integer array and a double-precision array with size of 

dimx into file called “test.bp”, which is organized in our 

native tagged binary file format. BP, which stands for 

binary packed, allows users to include rich metadata 

associated with the block of binary data. The 

corresponding XML configuration file required by this 
program is demonstrated in the next section. 

 
/*example of parallel MPI write into a single file */ 
#include ”adios.h” 
#include <stdio.h> 

int main(int argc, char *argv[]) 
{ 
  int i, myrank, dimx, *X; 
  double *Y; 
  dimx=100; 
  X=(int*)malloc(sizeof(int)*dimx); 
  Y=(double*)malloc(sizeof(double)*dimx); 
  for(i=0;i<dimx;i++) 

  { 
    X[i]=i+myrank*dimx; 
    Y[i]=2.5*X[i]; 
  } 
  MPI_Init(&argc,&argv); 
       MPI_Comm_rank(mpi_comm_world,&myrank);       

adios_init(“config.xml”,mpi_comm_world, 
mpi_comm_self,mpi_info_null); 

adios_get_group(&grp_id,”Potential”);  
adios_open(&buf_id,grp_id,“data.bp”); 
adios_write(buf_id,”dimx”,&dimx); 
  adios_write(buf_id,”X”,X); 
  adios_write(buf_id,”Potential”,Y); 
adios_close(buf_id); 
adios_finalize(myrank); 
MPI_Finalize(); 

free(Y);free(X); 
} 

As shown in this example, a pair of adios_init 

and adios_finalize should be called between the 

actual paired mpi_init and mpi_finalize. Before 

any adios operation starts, adios_init is required to 

load the XML configuration file creating internal 

representations of various data types and defining the 

methods used for writing. Presently, there are additional 

parameters to define various MPI elements that are 

supposed to be transparently compatible between Fortran 
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and C, but are not. Similar to mpi_finalize, 

adios_finalize releases all the resources allocated 

by adios and guarantee all the remained adios operations 

be finished before the code exits. After the basic adios 

initialization, adios_get_group gets called to retrieve 

a handle for the group with the name of “Potential”, 

which should be specified in the XML configuration file. 

The unique feature of adios is the group implementation, 

which is constituted by a list of variables and associated 

with individual transport methods. The flexibility allows 

the applications to make the best use of the file system 

according to its own different IO patterns. 

The ADIOS function corresponding to fopen is  

called adios_open. Let us consider the arguments one 
by one.ADIOS_open(io_handle,group_handle, filename). 

The first argument is an IO handle.  Different from file 

descriptor, this IO handle only prepare the data type for 

the subsequent calls to write data using io_handle. The 
second argument is a string representing the name of file, 

as in fopen. As the last argument, we pass the address of 

the ADIOS_FILE variable, which the adios_open will fill 

in for us.  adios_close() triggers the building of the buffer 

for transfer and then returns control back to the caller. At 

this point, all of the data is copied and will be sent as-is 

downstream.  If the handle is opened for read, this will 

cause the fetch of the data, parse it, and populate it into 

the provided buffers. This is currently hard-coded to use 

posix io calls. 

Adios_write(io_handle,fieldname,&var) submit a 
data element for writing and associate it with the given 

filename for this type. This does not actually perform the 

write. Scalars are duplicated, vectors are referenced. Any 

changed to vectors before adios_close is called will be 

reflected in the written data. In the same way, adios_read 

(io_handle, field_name, &var) - submit a buffer space 

(var) for reading a data element into. This does NOT 

actually perform the read. Actual population of the buffer 

space will happen on the call to adios_close() 

As presented in the program, ADIOS provides the 

application programmers easy-to-use, rich-featured APIs. 
In the near future, we will implement ADIOS_gwrite(), 

which will replace all the tedious adios_write function 

calls and offer cleaner interface for scientists and 

programmers. 

3. ADIOS XML File Description 

By abstracting metadata, data type and dimension 

from source code into XML file, it not only gives users 

more flexibility to annotate the arrays or variables, but 

also centralizes the description of all the data structures, 

which in return allows IO componentization for different 

implementation of transport methods. By cataloguing the 

data types externally, we have an additional 
documentation source as well as a way to easily validate 

the write calls compared with the read calls without 

having to decipher the data reorganization or selection 

code that may be interspersed with the write calls. Once 

nice feature of the XML name attributes s that they are 

just strings. The only restrictions for their content are that 

if the item is to be used in a dataset dimension; it must not 

contain a comma and must contain at least one non-
numeric character. This is useful for putting expressions 

as various array dimensions elements. The following 

illustrates the corresponding XML configuration for the 

example we demonstrated in the previous section.  
<?xml version="1.0"?> 
<adios-config host-language="C"> 
<adios-group name="Potential "> 
<global-bounds dimension=”g_x”  offset=”o_x”> 

<var name="g_x" type="integer"/> 
<var name="o_x" type="integer"/> 
<var name="dimx" type="integer"/> 
<var name="X" type="integer" dimension=”dimx”/> 
<var name="P" type="double" dimension=”dimx”/> 
<attribute name=”description” path=”/P” value=”the 

potential value”/> 
</global-bounds> 

</adios-group> 
<method priority="1" method="MPI-IO" 

group="Potential"/> 
<buffer size-MB="100" allocate-time="now"/> 
</adios-config> 

 

The main elements of the xml file format are of the 

format  <element-name attr1 attr2 …>. At a minimum, a 

configuration document must declare adios-config 

element. It serves as a container for other elements; as 

such, it MUST be used as the root element. The expected 

children in any order would be adios-group, method and 

buffer.  
The adios-group element represents a container for a 

list of variables that share the common IO pattern; in this 

case, we name it as Potential. Depending on the different 

scientific application, the occurrence of adios-group can 

be as many as needed.   

Global-bounds are an optional nested element for 

adios-group, which specifies the global space and offsets 

within that space for the enclosed variable elements.   

The nested var element for adios_group can be either 

an array or a primitive data type, determined by the 

dimension attribute provided.  

The Attributes associated with var element is listed as 
below:  

 • path - HDF-5-style path for the element or path 

to the  

HDF-5 group or data item to which this attribute is 

attached.  

 • dimensions - a comma separated list of 

numbers and/or names that correspond to integer var 

elements to determine the size of this item  

 • write - [optional] if it is set to “no”, then this is 

an informational element not to be written intended for 

either grouping or dataset dimension usage  



 

CUG 2008 Proceedings 4 of 8 

 

 • copy-on-write - [optional] if it is set to “yes”, 

then this is var must be copied when it is provided rather 

than caching a pointer.  

 

The method element is used to specify the mapping 

of an IO transport method to a data type including any 
initialization parameters. There are two major attributes 

required for the method element:  

 • method - a string indicating a transport method 

to use with the associated adios-group.  

 • group - corresponds to an adios-group specified 

earlier in the file.  

 

The buffer element defines the attributes for internal 

buffer size and creating time, which will apply to the 

whole application. 

Changing IO Without Changing Source: The method 

element provides the hook between the adios-group and 
the transport methods. Simply by changing the method 

attribute of this element, a different transport method will 

be employed. If more than one method element is 

provided for a given group, they will be invoked in the 

order specified. This neatly gives triggering opportunities 

for workflows. To trigger a workflow once the analysis 

data set has been written to disk, make two element 

entries for the analysis adios-group. The first indicates 

how to write to disk and the second will perform the 

trigger for the workflow system. No recompilation, 

relinking, or any other code changes are required for any 
of these changes to the XML file. 

4. ADIOS Methods  

POSIX Method 

The simplest method provided in ADIOS just does 

binary POSIX IO operations. Currently, it does not 

support shared file writing or reading and has limited 

additional functionality. The main purpose for this IO 

method is to provide a simple way to migrate a one file 

per process IO routine to ADIOS and test the results 

without introducing any complexity from MPI-IO or other 

IO methods. Performance gains just by using this 

transport method are likely due to our aggressive 
buffering for better streaming performance to storage. 

Additional features may be added to this transport 

method over time. Most likely is a new transport method 

with a related name, such as POSIX-ASCII, would be 

provided to perform IO with additional features.  The 

POSIX-ASCII example would write out a text version of 

the data formatted nicely according to some parameters 

provided in the XML file. 

MPI-IO Method  

Many large-scale scientific simulations generate a 

large amount of data, spanning thousands of files or 
datasets. Allowing the use of MPI-IO to reduce the 

amount of files will be helpful to the data management, 

storage and access.  

The original MPI-IO method was developed by Steve 

Hodson based on his experiments with generating the 

better MPI-IO performance on the Jaguar machine at 

ORNL. Many of his insights have helped us achieve 
excellent performance on both the Jaguar XT4 machine 

and on theother clusters, suchas the Ewok end-to-end 

cluster. Some of the key insights we have taken advantage 

of include artificially serialized MPI_File_open calls and 

additional timing delays that can achieve reduced delays 

due to metadata server (MDS) conflicts on the attached 

Lustre storage system. 

The adapted code takes full advantage of NxM 

grouping through the coordination-communicator. This 

will generate one file per coordination-communicator 

with the data stored sequentially based on the process 

rank within the communicator. Figure 1 presents in the 
example of GTC code, 32 processes inthe same Toroidal 

zonewrite to one integrated file. Additional serialization 

of the MPI_File_open calls is done using this 

communicator as well since each process may have a 

different size data payload. Rank 0 calculates the size it 

will write, calls MPI_File_open, and then sends its size to 

rank 1. Rank 1 listens for the offset to start from, adds its 

calculated size, does an MPI_File_open, and sends the 

new offset to rank 2. This continues for all processes 

within the communicator. Additional delays for 

performance based on the number of processes in the 
communicator and the projected load on the Lustre MDS 

can be used to introduce some additional artificial delays 

that ultimately reduce the amount of time the 

MPI_File_open calls take by reducing the bottleneck at 

the MDS.An important fact to be noted is that individual 

file pointers are retrieved by MPI_File_openso that each 

process has its own file pointer for file seek and other I/O 

operations. 

 
Figure 1:  meta-data server friendly approach -- offset the 

create/open in time 

While we have built this mainly with Lustre in mind 

due to it being the primary parallel storage service we 
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have available, other file system specific tunings are 

certainly possible and fully planned as part of this 

transport method system. For each new file system we 

encounter, a new transport method implementation tuned 

for that file system, and potentially that platform, can be 

developed without impacting any of the scientific code. 
This transport method is the most mature, full 

featured, and well tested. We recommend anyone creating 

a new transport method study this one as a model of full 

functionality and some of the advantages that can be 

made through careful management of the storage 

resources. 

MPI-CIO Method 

MPI-IO defines a set of portable programming 

interfaces for multiple processes concurrent access to 

shared files [1]. It is often used to store and retrieve 

structured data in their canonical order. The interfaces are 

split into two types: collective I/O and independent I/O. 
Collective functions require all processes to participate. 

Independent I/O, in contrast, requires no process 

synchronization. 

Collective I/O enables process collaboration to 

rearrange I/O requests for better performance [2,3]. The 

collective I/O method in ADIOS first defines MPI 

fileviews for all processes based on the data partitioning 

information provided in the XML configuration file. 

ADIOS also generated MPI-IO hints, such as data sieving 

and I/O aggregators, based on the access pattern and 

underlying file system configuration. The hints are 
supplied to the MPI-IO library for further performance 

enhancement. The syntax to describe the data-partitioning 

pattern in the XML file uses <global-bounds 
dimensions offsets> tag, which defines the global array 
size and the offsets of local subarrays in the global space.  

The global-bounds element contains one or more 

nested var elements each specifying a local array that 

exists within the described dimensions and offset.  

Multiple global-bounds elements are permitted and 

strictly local arrays can be specified outside the context of 

the global-bounds element. 

As with other data elements, each of the attributes of 

the global-bounds element is provided by the adios_write 

call.  The dimensions attribute is specified by all 

participating processes and defines how big the total 

global space is.  This value must agree for all nodes. The 
offset attribute specifies what offset into this global space 

the local values are addressed. The actual size of the local 

element is specified in the nested var element(s).  For 

example, if the global bounds dimension were 50 and 

offset were 10, then the var(s) nested within the global-

bounds would all be declared in a global array of 50 

elements with each local array starting at an offset of 10 

from the start of the array.  If more than one var is nested 

within the global-bounds, they share the declaration of the 

bounds, but are treated individually and independently for 

data storage purposes. 

MPI-AIO Method 

The initial implementations of the asynchronous 

MPI-IO method (MPI-AIO) is patterned after the MPI-IO 

method. Scheduled meta-data commands are performed 
with the same serialization of MPI_Open calls as given in 

Figure 1. 

The degree I/O asynchronicity will depend on several 

factors. First, the ADIOS library must be built with 

versions of MPI that are bullt with ansynchronous I/O 

support through the MPI_File_iwrite, MPI_File_iread, 

and MPI_Wait calls. If asynchronous I/O is not available, 

these calls revert to synchronous (read blocking), 

behaviour, identical to the MPI-IO method described in 

the previous section.  

Another important factor is the amount of ADIOS 

buffer space available. In the MPI-IO method, data is 
transported and ADIOS buffer allocation is reclaimed for 

subsequent use with calls to adios_close(). In the MPI-

AIO method, the “close” process can be deferred until the 

buffer allocation is actually needed for new data. 

However, if the buffer allocation is exceeded, the data 

must be synchronously transported before the application 

can proceed. 

 The deferral of data transport is key to effectively 

scheduling ansynchronous I/O with the computation, to be 

implemented in version 2.0. In ADIOS version 1.0, the 

application explicitly signals that data transport must be 
complete with intelligent placement of the adios_close() 

call to indicate when I/O must be complete. Later versions 

of ADIOS will perform I/O between  

adios_begin_calculation andadios_end_calculation calls, 

and complete I/O on adios_end_interation calls. 

DataTap Method 

DataTap is an asynchronous data transport method 

built to ensure very high levels of scalability through 

server-directed I/O[7,8]. It is implemented as a request-

read service designed to bridge the order of magnitude 

difference between available memory on the I/O partition 

compared to the compute partition. We assume the 
existence of a large number of compute nodes producing 

data (we refer to them as DataTap clients) and a smaller 

number of I/O nodes receiving the data (we refer to them 

as DataTap servers).  

ADIOS

Stream 
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Data 

buffer

Performance 

buffer

Stream Manager

DataTap
Receive 

data 

buffers
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Read
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Figure 2: Datatap Architecture 
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Error! Reference source not found.describes the 

DataTap architecture. Upon application request the 

compute node marks up the data in PBIO [9] format and 

issues a request for a data transfer to the server. The 

server queues the request until sufficient receive buffer 

space is available. The major cost associated with setting 
up the transfer is the cost of allocating the data buffer and 

copying the data. However, this overhead is small enough 

to have little impact on the overall application run-time. 

When the server has sufficient buffer space, an RDMA 

read request is issued to the client to read the remote data 

into a local buffer. This data is then written out to disk or 

transmitted over the network as input for further 

processing in the I/O Graph.  

We used the Gyrokinteic Turbulence Code, GTC[] 

as an experimental testbed for the DataTap transport. 

GTC is a particle-in-cell code for simulating fusion within 

tokamaks, and it is able to scale to multiple thousands of 
processors. In its default I/O pattern, the dominant I/O 

cost is from each processor writing out the local particle 

array into a file. Asynchronous I/O reduces this cost to 

just a local memory copy, thereby reducing the overhead 

of I/O in the application.  

DART Method 

DART is an asynchronous I/O transfer method within 

ADIOS that enables the low-overhead high-throughput 

data extraction from a running simulation. The design of 

DART consists of two main components, (1) DARTClient 

module, and(2) DARTServer module. Internally, DART 
system uses Remote Direct Memory Access (RDMA) to 

implement the communication, coordination and data 

transport mechanism between the DARTClient and the 

DARTServer modules. 

The DARTClient module is a light library that 

implements the asynchronous I/O API. It integrates with 

the ADIOS layer by extending the generic ADIOS data 

transport hooks. It uses the ADIOS layer features to 

collect and encodethe data written by the application into 

a local transport buffer. Once it has collected data from 

the simulation, DARTClient notifies the DARTServer 

through a coordination channel that it has data available 
to send zout. DARTClient then returns and allows the 

application to continue its computations, while data is 

asynchronously extracted by the DARTServer. 

The DARTServer module is a stand-alone service 

that runs independently from the simulation. It typically 

runs on dedicated I/O nodes, and transfers data from the 

DARTClients and to remote sites, e.g., a remomte a 

storage system such as the Luster file system. One 

instance of the DARTServer can service multiple 

DARTClients instances in parallel. Further, the server can 

run in cooperative mode, i.e., multiple instances of the 
server cooperate to service the clients in parallel and to 

balance load. The DARTServer receives notification 

messages from the clients, schedules the requests and 

initiates the data transfers in parallel from the clients. The 

server schedules and prioritizes the data transfers while 

the simulation is computing in order to overlap data 

transfers with computations, to maximize data throughput, 

and to minimize the overhead on the simulation. 

NULL Metod 
The ADIOS NULL method allows users to quickly 

comment out a ADIOS group, by changing the transport 

method to “NULL”. This allows users to test the speed of 

the routine, by timing the output against no IO. This is 

especially useful when working with asynchronous 

methods which have indeterminate amount of time.  

Another useful feature of this IO is that quickly allows 

users to also test out the system, and see if bugs are 

possibly caused by the IO system, or perhaps by other 

places in the codes. 

5. ADIOS in codes 

ADIOS in GTC 
GTC fusion code provided a variety of different 

outputs with varying frequency and sizes. From an IO 

complexity perspective, GTC has seven different groups 

of output in five categories, each being handled 

differently. These five categories are restart, tracking, 

dataout3D, analysis, and diagnosis output. Each of these 

categories has different IO requirements based on their 

output patterns. For instance, the large restart data needs 

to be written as quickly as possible with some annotation. 

To mitigate the runtime performance impact, it is written 

infrequently. The analysis, tracking and output3D data, 
while much smaller, needs to be written out to disk more 

often. The diagnostic outputs are written very frequently, 

but are little more than a few kilobytes per time step and 

always only from the master processor. Therefore, each of 

these output groups has different requirements for IO 

performance, annotation and potential tool integration. 

We also noted that some data was only written as a header 

by the master process followed by the collection of the 

payloads from all processors. The dissimilarity between 

the header data and actual payload can be easily 

differentiated by specifying different adios-group in XML 

file. In addition, ADIOS provides the flexibility of 
selecting how each of these different data groupings 

performs IO simply by specifying the selected method for 

each of these groups in the XML. It handles the different 

sizes for the analysis array outputs through the use of var 

names for array dimensions.  Through the copy-to-write 

feature in the XML file, we both note and handle the 

transient nature of the data in the given pointer. This also 

gives us the ability to take stack-based temporary values 

and write them properly.   

In GTC old restart IO, each MPI process writes/reads 

a separate file, which is N to N IO complexity. If the new 
version of ADIOS APIS with MPI-IO transport method, 

npartdom (the number of processes in particle domain) 
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MPI processes writes/reads in one integrated file. The 

total number of files is reduced to mzetamax, shown as 

below in Figure 3. In this manner, it not only allows each 

plane has its own file, but is also convenient for 

programmers to extract arbitrary plane instead of parsing 

a big binary file if it is collected from all the process in 
the communication world. 

 
Figure 3 Gyrokinetic Toroidal Code Mesh Space 

ADIOS in GTS 
GTS is a general geometry model of the GTC code, 

which has a systematic treatment of plasma rotation and 

equilibrium EXB flow, realistic plasma profiles and 

corresponding magnetohydrodynamic (MHD) equilibria. 

They use a symmetry coordinate system to construct the 

relatively regular mesh in real space for strongly shaped 

toroidal plasmas, which facilitates straightforward 

visualization.   

There are two major sources of IO in this code, one 

from the restarts, and the second is from the particle 

diagnostics. Unlike GTC, GTS has developed a technique 

to bin the particles in the code into a five dimensional 
mesh. The size of the mesh is determined by how much 

data can be stored and written to disk in a timely fashion. 

The binning is rather cheap, and can be down in <0.01 of 

the time in the code, but the IO generated from this can be 

rather large. Realistic numbers for the mesh size can be 

over 120GB, which much be written out every 60 seconds 

for a realistic simulation. This data needs to be written out 

approximately every other GTS timestep, and we need 

approximately 2,000 timesteps written to disk to get 

relevant physics generated from this output. This means 

that one simulation, which last for 1.5 days can generate 
over 200 TB of data in 1.5 days.   

The other major change to GTS was switching out 

the „fort.*” files to ADIOS output, which allows us to 

place more metadata in the output.  

ADIOS in Chimera 

The Chimera supernova code provided new 

challenges as compared with GTC. First, the IO was split 

into fewer groups than GTC, but the groups were much 

larger. There are only two groups in Chimera, but a total 

of around 475 vars. Second, there were other IO 

operations that generated different formats of data 

previously output. Our asynchronous methods will take 
advantage of this by collecting the output once and 

processing it into multiple streams to storage with one in 

the compact binary representation and others in the 

various formatted text forms desired by the users. 

By just changing the main restart IO to use ADIOS 

with the POSIX transport method, we saw a 6.5% 

reduction in wall clock time for identical runs between the 
original version and our ADIOS version. 

ADIOS in S3D  

As a part of the efforts to provide a versatile I/O 

middleware for scientific applications, we have ported the 

I/O kernel of the combustion simulation program, S3D, to 

the initial ADIOS middleware. The porting of the ADIOS 

to S3D is rather straightforward with the close 

resemblance of ADIOS interface to the POSIX interface. 

Rougly speaking, there are three steps involved. In the 

first step, ADIOS is initialized right after the S3D 

program starts, i.e., after MPI_Init(). In the second step, 

the bulk of the S3D I/O code has been replaced with 
ADIOS I/O routines. An ADIOS configuration file that 

describes the attributes of various S3D variables is also 

created. This configuration file offers a great deal of 

flexibility for ADIOS to choose among its I/O methods. 

Currently, the POSIX I/O method is activated. Finally in 

the third step, ADIOS support is finalized before the S3D 

program reaches MPI_Finalize(). Timing profiles are 

taken during the ADIOS initialization and finalization 

steps. One thing to note is that, because S3D uses 8-byte 

integers, the ADIOS package has been improved to 

accommodate such scientific applications that make use 
of variable size data types.  

ADIOS in XGC 

The XGC code is a Gyrokinetic Turbulence code to 

understand the edge of the plasma. It is similar to the 

GTC code, but deploys a full-f algorithm, compared to a 

delta-f algorithm. This means that the total amount of 

particles per cell will be much higher than the GTC code, 

which uses a delta-f method. The simulations also run for 

a longer amount of time than the GTC code, which 

requires that the IO system be even more impervious to 

problems.  

ADIOS is currently integrated into the working 
version of XGC, and has eleven ADIOS groups: restarts, 

particle diagnostics, electron field diagnostics, ion field 

diagnostic, 2D diagnostics, and various one dimensional + 

time diagnostics. By changing all of the IO from XGC 

(originally in netcdf, hdf5, binary files, and fort.* files), 

we are able to unify the IO in this code to one single set of 

API‟s. The initial performance from ADIOS in this code 

looks encouraging, although we are waiting for full Cray 

XT at ORNL to become available to truly test the system. 

6. ADIOS Performance  

The performance measurements we perform for 
ADIOS are focused in two areas. First, we want to get the 
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best performance possible out of a transport method to 

storage. Our 20 GB/sec performance using MPI-IO to 

Lustre on Jaguar demonstrates this. Second, reducing wall 

clock time for jobs is our real measure for success. Only 

by reducing this time will there be a real improvement in 

terms of cost to users. Our initial Chimera without any 
optimizations generated a 6.5% reduction in wall clock 

time. Further optimizations will yield better performance 

improvements. We have also evaluated the performance 

up to 1024 processes for the S3D code, and have 

demonstrated that ADIOS is able to achieve comparable 

performance to the original S3D I/O implementation. 

7. Conclusion  

ADIOS is a componentization of IO layer. It has been 

designed to be easy to program, and to be fast and 

portable. By allowing users the flexibility to switch 

between different IO implementations, we can help ensure 

at least one method works properly on a new platform. 
Currently, the GTC, GTS, XGC1, M3D-K, S3D, and 

Chimera codes are planning to use ADIOS, since it‟s 

promise is scalable portable performance. Each group will 

most likely use different ADIOS methods to enhance their 

own needs.  Preliminary results in our suite of codes on 

the Cray XT have shown an impressive 20GB/sec for 

writing the data. 

ADIOS 1.0 will be released in the fall of 2008, and 

will be optimized for extremely fast writes. Most features 

in ADIOS will continue to evolve. Some of the new 

features which we will add to the features are group 
writes, where users will be able to have just one write 

statement in their code, and ADIOS will look at all of the 

variables in the XML configuration file and then write out 

all of the variables with the one write statement. 

Another major enhancement that we are currently 

working on is a header that allows for extremely efficient 

writes, and allows us to be able to place an indexing table 

in front of the file. At first, we will implement the 

indexing, and later we will implement this as part of the 

writing; allowing the code developer to choose if they 

want to pay the cost to compute this as the writes are 

occurring. 
Another advantage of ADIOS is that it allows the 

users to easily create large buffers for the write 

statements. File systems, such as LUSTRE, can easily 

take advantage of these large writes, allowing the users to 

get very fast writes. ADIOS also contains APIs to help 

schedule IO, allowing the asynchronous IO to only occur 

during the computational phases of the simulation, and 

not during the communication phase. 

Currently ADIOS is not taking advantage of a 

feedback mechanism but we envision that ADIOS will 

take advantage of this in two central ways. First, we can 
get feedback from the file system to find out if the 

synchronous writes will be fast. If the file system can 

quickly tell ADIOS that a restart should not be written, 

then we can easily allow this, by placing annotations in 

the XML file for this. We have already designed APIs 

which can work to count iteration counts in the 

simulation, and tell the system that certain data must be 

written out in a given amount of timesteps. Likewise, we 
can extend this to say, “write out restarts every 100 

iterations +- 10. In this way, we can easily allow ADIOS 

to try to write out the data when the disk system is not 

performing other IO operations, thus minimizing the 

amount of time required to write out the data. 
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