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Abstract 

In both high performance and enterprise applications, it is common for components to generate, exchange, 

process, and store or display large volumes of data. A key problem for such exchanges is the mismatches of data 

being generated with the data required by communicating software components. Such mismatches arise from natural 

differences in the data representations used by different components and for acquisition or display. They are due to 

the need to customize or personalize data for certain devices or end users. This paper describes automated methods 

and associated generative tools for correcting such mismatches using overlay networks to connect data producers 

with consumers. These data morphing methods automatically generate data transformation codes from declarative 

specifications ‘just in time’ and ‘in network’, i.e., when and where needed. Runtime code generation takes into 

account the current nature of the data being generated, the current needs of data sinks, and the current resources 

available in the overlay connecting sources to sinks. In addition, it can consider the shared requirements of multiple 

consumers to reduce redundant data transmissions and transformations. Dynamic, ‘in network’ data morphing is 

realized with the XCHANGE toolset, which can generate transformation codes both from high-level declarative 

specifications like MathML and with methods that automatically correct for type mismatches. XCHANGE is integrated 

with ECho, the high performance event-based middleware and it is applied to both high performance and enterprise 

applications. Results show that for remote visualization of the data created by a high performance simulation, 

dynamic data morphing can better match the large data volumes being exchanged to available network resources. 

For an enterprise application in the healthcare domain, dynamic data morphing demonstrates the importance of 

generating code to reduce server loads. 
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1. Introduction 

A large class of service-oriented applications uses distributed components to capture, process, and display 

data in real-time across heterogeneous underlying execution platforms [47, 48, 49, 50]. A specific example is a 

scientific collaboration in which data is streamed from a running simulation to multiple end users. Here, large data 

volumes are accompanied by substantial processing demands when different end users require individualized views 

of simulation outputs. Another example is in the healthcare domain, where a hospital must share patient data across 

many distributed subsystems [35]. Here, scalability concerns limit the overheads acceptable for the data processing 

and conversions needed to match data representations to the diverse needs of individual subsystems. 

This paper addresses a general issue for the data-driven, service-oriented, distributed applications described 

above: how to efficiently deal with dynamic mismatches in the data formats output by one application component 

(i.e., data source) vs. the inputs required by another (i.e., data sink). Our XCHANGE approach to dealing with such 

mismatches performs runtime, ‘in network’ data morphing, that is, it dynamically constructs and automatically 

populates with data transformation codes overlay networks connecting sources to sinks. Runtime code generation 

and deployment are based on meta-information that includes (1) type information based on which data mismatches 

between outputs and inputs are diagnosed and corrected via automatically generated code and (2) transformations 

explicitly described by user-specified, meta-level instructions from which efficient binary codes are generated at 

runtime, whenever or wherever needed. Dynamic compilation and code deployment also capitalize on the data 

streaming nature of our target applications by eliminating repetitive data transformation actions and sharing selected 

transformation results across multiple data sinks.  

XCHANGE addresses data mismatches that range from row- vs. column-major data layouts and their 

associated impacts on the performance of parallel applications [21] to changes in time or length scales for data 

emitted vs. consumed by multi-scale modeling applications [26] to resolution changes or per-client requirements for 

data output by some simulation model vs. what is displayed by an end user device (e.g., see [1] or [27]). It can also 

be used to deal with mismatches in data acquisition, as with satellite data repeatedly processed until ingested by 

some simulation model or sensor data processed, filtered, and transformed prior to being used for some command 

and control function [28]. Finally, XCHANGE has been shown useful for applications where privacy or proprietary 

concerns require data to be filtered or transformed prior to being released to another software component [29, 60]. 
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A specific set of data mismatches studied in this paper occurs in the SmartPointer [1] framework for real-

time scientific collaboration, which can create per-user and per-device custom views of scientific data. For the 

molecular dynamics (MD) simulation data interactively viewed with SmartPointer, some users may be interested in 

viewing copper atoms and their positions, for instance, whereas others are interested in the bond forces occurring in 

the simulated material. Using the traditional client-server approach to distributed computing, a straightforward 

approach to viewing such data is to send all of it to each sink and then have each sink perform the processing 

necessary to implement its specific data view. For the large data volumes emitted by modern MD applications, this 

will generate additional and needless data transport and processing actions. The alternate approach of moving data 

conversion operations to the source has been shown useful [45], but it is limited by the implied strain on source-side 

host CPU resources [30, 46] and/or the degrees of data expansion experienced at the source. XCHANGE affords us the 

flexibility to combine the generation of data transformations with their ‘in network’ deployment. That is, appropriate 

code generation makes viable the deployments best suited for current resource conditions: into sinks, into the 

overlay, or into sources. As a result, by combining code generation with deployment and using real-time monitoring, 

data morphing is customized to overlay characteristics like the processing resources on certain overlay nodes and the 

network resources between these nodes. The outcome is improved scalability and/or performance [13], which 

XCHANGE evaluates with application-specific metrics. One metric used in this paper creates data conversions and 

maps them to overlay nodes to reduce total network usage [31, 32]. Others might minimize resource consumption 

[33] or some global metric like end-to-end delay [13].  

The XCHANGE toolset and implementation provide the following new functionality: (1) high level 

descriptions of data transformations processed by a transformation descriptor parser, (2) an optimizer that carries out 

cross-request optimizations on the code being generated, (3) a code distributor for mapping the optimized graph of 

transformations onto available overlay nodes, and (4) a transformation deployment daemon -- controller -- able to 

dynamically place transformation codes into the overlay. XCHANGE can be associated with any overlay-based 

messaging or data distribution middleware. The middleware used in our experiments is EVPath, a subset of the 

ECho high performance publish/subscribe infrastructure [6]. EVPath provides the overlay abstractions and control 

interfaces required by toolsets like XCHANGE offering control methods for overlay management to dynamically create 

or delete new nodes, to install new data transformers or filters, to deploy code that changes how messages are routed 

across the overlay, and to acquire monitoring information about the underlying distributed execution platform. 
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Furthermore, targeting the high performance domain, the current implementation of XCHANGE with EVPath uses the 

Portable Binary I/O format (PBIO) [2] to describe the structure of the binary data being moved, somewhat like the 

‘trivial’ binary encodings of XML in [52] describe the structure of XML records in binary forms. Addressing the 

high performance domain, however, EVPath also uses PBIO binary data encoding for its actual data exchanges 

combining or replacing such exchanges with XML schema-based data descriptions [10] (via the XMIT [8] library) 

only when or if needed by participating components.  

Jointly, XCHANGE and ECho offer functionality much beyond that of network-level multicast 

implementations like MBone [5] and they have been applied to a wide range of underlying execution platforms and 

network topologies. In these contexts, the advantages of using XCHANGE for implementing distributed data 

transformations are multi-fold: 

• Efficient data morphing through runtime code generation. By explicitly describing data transformations, 

code implementing them can be generated automatically and dynamically in the forms needed for the 

currently ‘best’ deployment to distributed overlay nodes. When bandwidth is limited, for example, 

generation and deployment can be optimized to minimize unnecessary data transmission. Furthermore, 

runtime code generation makes it feasible to optimize data transformations (1) across entire affected 

overlay paths and (2) across all involved data sinks and sources. Sample optimization techniques used in 

this paper include the recognition and elimination of replicated data transformations and the use of 

operation dependencies to appropriately distribute operations across different overlay nodes. The outcome 

of such analyses is an optimized scheme for dynamically evolving data from a source to each of its sinks.  

• Dynamic, incremental deployment. XCHANGE implements efficient techniques for incorporating new 

requests into existing overlays with small impact on the currently running application. Such dynamic 

deployment also affords us the opportunity to consider reconfiguring an existing overlay network based on 

changing conditions. 

• High performance. By directly operating on binary data, XCHANGE-generated codes are applicable to both 

traditional high performance applications moving large data volumes and to applications that require low 

overheads for high request volumes. That is, XCHANGE does not require application data to be in an XML 

format. Rather, it uses XML-based data format descriptions to generate efficient binary codes that operate 
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on the binary data being described. The motivation is to avoid (1) the overheads caused by runtime XML 

parsing and (2) the data expansions experienced when using XML data encodings [52]. 

An interesting attribute of XCHANGE not highlighted here is that its code generation and deployment schemes are 

replaceable since they are based on explicit meta-information maintained by the middleware about the overlay to 

which code is being deployed.  

This paper demonstrates the utility of XCHANGE for dynamic data morphing with a distributed scientific data 

visualization, which consists of a single server sending display data to multiple sinks each requiring different data 

transformations. A deployment scheme optimized to reduce network usage causes a 64% reduction in network usage 

vs. a sink-hosted transformation model and a 14% reduction over a source-hosted transformation model. A second 

use of XCHANGE for an application in the healthcare domain focuses on maintaining high end-to-end performance 

while also offloading the transformation CPU workload from endpoints. One scenario uses a representative ‘results’ 

message from a laboratory system to a transactional system where the two end points use different data 

organizations and have different scaling requirements. By transforming message formats in an intermediate node 

rather than at the endpoints, tasks can be offloaded from resource-poor or highly loaded end points with an up to 

17% improvement in end-to-end performance. 

The remainder of this paper is organized as follows. Related work is discussed in Section 2 followed by an 

overview of the XCHANGE architecture and implementation in Section 3. Section 4 discusses and evaluates the 

XCHANGE implementation. Experimental evaluations appear in Section 5. Conclusions and future work appear in 

Section 6 followed by references in Section 7. 

2. Related Work 

A large set of research and systems uses SQL-like constructs to transform and combine data with an 

overlay network linking sources and sinks, as in publish/subscribe infrastructures [6, 36, 51], in systems that aim to 

provide rich data access models like DataCutter [12] and MOCHA [16, 18], STREAM [19], Aurora [20], In-Transit 

[13], and in formulations of continual query systems [55, 56]. Since data manipulations are expressed as SQL-style 

operations, the semantic information present in query graphs can be used to automate tasks like dynamic query 

routing [36], query graph deployment [13], overlay network construction and repository consistency [53], and 

similar topics. Most such work is complementary to XCHANGE, which attempts to combine the generation of data 

manipulation codes with the mapping process thereby offering an additional degree of freedom in how data 
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transformations may be carried out. We share with such systems the assumption that the data being manipulated is 

represented in some well-structured form rather than as unstructured XML. Borrowing concepts from such research, 

it would be interesting to make our code generation and therefore our data distribution consistency-sensitive [53, 58, 

59] or perhaps even drive it with explicit measures of data similarity [57]. Scalable methods for overlay deployment 

and management like those described in [13] are not relevant to this paper’s experimental results. Here we simply 

use these methods to experiment with alternative realizations of data manipulations and their mappings to different 

overlay nodes.  

DataCutter [12, 14] delivers client-specific data visualizations to multiple end points, but there are some 

key differences with our work. First, DataCutter uses C++ code for custom filter functions thereby imposing 

programming tasks on end users. Second, for automatically generated filters, DataCutter uses an SQL-like ‘flat’ data 

model and approach for data selection whereas we use comparatively richer descriptions for both filter and 

transformation operations. The manipulation codes generated from these descriptions operate on data in the forms 

with which end users are already familiar. In addition, code generation can optimize similar requests across multiple 

clients by combining common portions of transformations from multiple sinks into a single operation and/or by 

splitting transformations for distribution to the most appropriate locations on the paths from sources to sinks. 

Many tools use XML syntax to describe querying of data sources including XWrap [54] and YATL [3]. For 

instance, YATL, built as an extension to the ML language, provides a declarative language for transforming a XML 

document into a new one based on the query issued. In contrast, we manipulate data in its native binary form using 

XML at the meta-level to specify the data types and transformations being applied to binary data. Furthermore, our 

approach permits use of a variety of specification languages including those built on existing standards like MathML 

[11] and XML Schema [10]. We also do not limit the source formats of data, which may be XML or any other 

understandable format such as binary data created on the fly.  

Our work can also be compared to the programming methods offered by Java-based infrastructures and 

runtime deployment functionality like Enterprise Java Beans (EJBs) [34]. Of particular note is that EJBs and many 

similar technologies require a fixed type interface dictating the order and decomposition of necessary transformation 

operations at design time and the deployment descriptors and interfaces are codified separately from the actual 

transformations. While our work lacks the richness of EJB implementations, for the applications we consider, that 

penalty is offset by the fact that the actual decomposition and ordering of transformations can be completely 
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rearranged, whenever necessary, to account for changes in resource availabilities or new client requests, without any 

coding changes. 

 Finally, this work and our previous research with ECho [6] share the ability to dynamically install 

application-specific stream filters and transformers with systems like Infopipes [17]. 

3. XCHANGE Architecture and Implementation 

3.1 Overview  

Figure 1: Example Overlay Network 

Figure 1 depicts a simple overlay network connecting multiple sources to sinks, where the main component 

of interest is the ‘controller’, which interacts with overlay nodes to install new transformations or change existing 

ones. Data transformations in XCHANGE involve the following components: 

• Source. A source generates a single copy of a data record for downstream consumption with some well-

defined source format. 

• Sink. Consumes the data in some desired target format. 

• Transformation Description. Describes the source and sink data formats and the transformation operations 

necessary to perform the transformation. One of these is required for each sink. 

• Optimizer/Distributor. A process responsible for collecting the various sink requests, generating the 

appropriate overlay network, starting, and managing the flow of data. 

• Intermediate Node. A node in the overlay network capable of hosting some portion of the transformation 

operations required. An intermediate node is not restricted from residing on the same physical device(s) as 

the source or sink(s). 

Source

Optimizer/ 
Distributor

Sinks 

Transformation
Descriptions 

Intermediate Nodes 

Controller process

Node or address space
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• Controller. On each node capable of hosting transform(s), potentially including source and sink nodes, the 

controller daemon understands the data traffic flowing through the node and the filters and transforms to be 

applied to each distinct data stream. This is also the component responsible for compiling the 

transformation description generated for the intermediate form into the EVPath physical representation for 

the node. Once the node has been configured, the controller is not involved in the data path. 

3.2. Software Architecture 

Figure 2: Software Architecture of XCHANGE 

Figure 2 describes the software architecture of EVPath, ECho, and XCHANGE. The base layer uses EVPath 

and the PBIO [2] binary data formats, which jointly implement an efficient binary transport of typed data with 

automatic conversion to local platform formats. The CM (Connection Manager) [7] manages connections whereas 

EVPath enhances the basic functionality of CM with concrete representations for data manipulations (termed 

‘stones’) and with the aforementioned control methods for deploying stones, linking them to other stones, and 

deleting them [6]. The set of ‘stepping stones’ crossed by formatted data events create dynamic paths across the 

overlay network and such ‘stones’ can be linked to form arbitrary graphs. At each stone, filters and translation code 

can be installed to alter the way in which the data being streamed is routed and manipulated. The data filters and 

transforms used in this paper are written in E-Code [9], but EVPath also supports other methods for dynamic code 

deployment. Higher-level messaging semantics, like publish/subscribe, are implemented as control methods layered 

on top of the EVPath infrastructure. We currently support two different sets of semantics, one being ECho’s 

publish/subscribe, the other implementing an information flow model. The top layer consists of the end-user 

application and the XMIT tool [8], which can compile an XML schema [10] into a PBIO data format description and 

vice versa. There are three main components to the system: the controller, optimizer, and distributor. 
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3.3 Controller 

The controller is realized as a daemon installed on all potentially participating overlay nodes. In addition to 

handling maintenance tasks, this daemon includes a code and intermediate type generator based on the data 

transformation descriptor provided by the application. 

3.4 Optimizer 

The optimizer is a centralized component that generates the transformation flow graph for all connected 

clients. The general architecture of the optimizer and its role in dynamic code generation are depicted in Figure 3. 

 

Figure 3: Overview of Data Transformation Generation Process  

The operation of the optimizer is driven from the transformation descriptor file(s). That is, each sink provides an 

XML file describing the source and destination formats using an XML schema for each and a series of declarative 

transformation descriptions of how to adapt the source data format into the destination data format. The optimizer 

considers these along with the other resource constraints to determine the decomposition for deployment. Two 

examples of such descriptions are described next are derived from the two principal applications used in our work, 

the high performance remote data visualization and the enterprise health care example (see Section 5).  

3.4.1 Describing Transformation Operations 

 The transformation generation process shown in Figure 3 uses XML-based descriptions where each 

transformation description is an XML node named “assign” consisting of a “dst” and a “src” element. The “dst” 

element describes the destination format in which the result of the transformation should be stored. This may be 

either a simple item or a compound item to describe a path through the type “tree” to the element. For an array or 

block element, this is likely just the name of the array or block rather than a particular element. The “src” element 
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consists of one of several items describing both the element(s) from which the destination element is formed and the 

operation to apply. 

An example used in remote data visualization involves a 50% reduction in height and width of a 2-

dimensional array of, say, a bitmap image (25% of original data size), could be achieved by using a “reduce” 

element listing the factor and the source element(s). Code generation at the intermediate node controller understands 

how to generate the proper looping and other control constructs to apply the operation to the range of elements 

specified. The subscript attribute of the item node represents how to apply the mapping of the elements. 

For formulaic math operations, the MathML [11] standard is employed. This example shows a Body Mass 

Index (BMI) calculation, used in the healthcare example. 

By default, all elements referenced in a “src” node are assumed to be from the original source data stream. 

As with the MathML standard, the ci tag represents an identifier. We use our type navigation syntax within that 

  <assign> 

    <dst> 

      <compound> 

        <item name="pixel" subscript="x"/> 

        <item name="line" subscript="y"/> 

      </compound> 

    </dst> 

    <src> 

      <reduce factor="2"> 

        <compound> 

          <item name="pixel" subscript="x"/> 

          <item name="line" subscript="y"/> 

        </compound> 

      </reduce> 

    </src> 
  </assign> 

  <assign> 

    <dst>bmi</dst> 

    <src> 

      <apply><times/> 

        <apply><divide/> 

            <ci>weight</ci> 

            <apply><times/> 

              <ci>height</ci> 

              <ci>height</ci> 

            </apply> 

        </apply> 

        <cn>703</cn> 

      </apply> 

    </src> 

  </assign> 
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element to navigate to the proper data member for that portion of the formula. We would also use that structure if we 

were to need a previously calculated destination element as part of the new calculation. In that case, we would add 

an attribute of the compound element called “src” to be of the value “dst”. To handle the non-compound cases, we 

also have a “simple” element that can host the “src” attribute as well. 

3.4.2 Code Generation and Optimization 

The optimizer collects all transformation descriptor files to create the composite logical graph of all 

requests, ordering the transformations by merging common subgraphs first and then branching out to more unique 

transformations. The optimization process consists of finding a path from source to sink, via the network, so as to 

share transforms with those already being deployed. When the transforms assigned to the logical node (starting at 

the root of the graph) are a subset of the new transforms being deployed, the procedure can then look for a child 

node to continue to overlap the existing network. Otherwise, common elements are extracted into a new ancestor 

node and a new branch is created for the remaining transforms. 

Building the logical deployment involves distributing transforms across the various logical nodes. Type 

safety is maintained once the logical deployment is complete by visiting each logical node and ‘fixing up’ the 

incoming and outgoing data types. The current implementation uses a simple O(n) approach, where n is the number 

of nodes in the graph. Proper generation of source element propagation information is an important part of this 

process. Generally, this process collects the data elements generated in each node as it traverses down to the leaves 

and brings back the required source elements as it exits the child node visits. The process correctly assembles the 

intermediate types representing both the data elements generated so far and the source elements required by nodes 

downstream from the current node. The final step in the process is to map the logical graph to the physical overlay 

network for proper descriptor generation and deployment. The current deployment uses a simple latency metric to 

determine an appropriate distribution. More complex and efficient deployment algorithms have been studied 

elsewhere [13] and are beyond the scope of this paper. 

3.5 Distributor 

The distributor maps the transformation flow graph onto the physical network, installs the transforms and 

filters on the appropriate nodes, and starts or continues the flow of data from the source to the sinks. We use the 

infrastructure developed in [13] for this deployment work. 
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4. Implementation of XCHANGE -- Discussion and Evaluation 

This section discusses and evaluates some of the implementation choices made for XCHANGE, positioning 

XCHANGE as a set of tools useful for high performance applications and scalable server systems and to identify 

potential bottlenecks in the XCHANGE implementation. The micro-benchmarks performed for these purposes show 

that, by far, the slowest part of the current implementation is deployment, which, based on the experiments in [13], 

grows roughly linearly in time with the number of nodes being deployed. 

Using XML-described Transformations. A common criticism of using XML for high-end server applications is the 

relatively high cost of data parsing. XCHANGE does not experience such costs in the data fast path due to its binary 

representations of data and data transformations. Instead, with XCHANGE, the parsing costs experienced at runtime 

concern code generation, that is, we must parse the XML-described contents of transformation description files. For 

our XML parser, we are using the XML C Parser and Toolkit of Gnome (LibXML2) [15] in C++ with the SAX 

parser. Consistent with similar evaluations in [52], parsing costs for the test examples used for the scientific and 

healthcare applications described in this paper are not high. For both, results show that parsing overheads are less 

than 1 microsecond thereby demonstrating the viability of frequent runtime code generation for long-running data-

driven applications. 

Generating logical operator graphs. For brevity, we do not describe in detail the costs of graph generation other 

than commenting that overall generation cost are O(mn
2), where m is the depth of the logical graph and n is the 

number of transforms in the client request. The actual transformations used in the applications described in this 

paper exhibit graph generation times of less than 1 microsecond for each case. 

Mapping operator graphs to the overlay and to physical machines. Using the mapping algorithm described in [13], 

initial deployments of logical graphs to overlays across 10s of machines can be carried out in timeframes ranging 

from 200 to 800 milliseconds. Steps taken involve the transmission of XML layout descriptors to overlay 

controllers, parsing and compiling of XML specifications to appropriate machine code, and the assembly of the 

intranode data flow and transforms from the incoming stream to each of the outgoing streams. Since transforms are 

generated during the logical and physical mapping steps, mapping simply involves a translation operation to change 

the XML transform descriptions into PBIO schemas and then into ECL. The costs of creating and linking stones and 

deploying and having the ECL compiled for the transforms are sufficiently small that all of the test examples have a 

<< 1 microsecond total duration. 
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5. Experimental Evaluation 

To evaluate the efficacy of XCHANGE, two different scenarios are examined. The first scenario emulates the 

scientific applications implemented with SmartPointer by evaluating the costs associated with data transport (and 

conversion) from a single source to three sinks. The second scenario is representative of event message flows in a 

hospital’s computing infrastructure using a single source and a single sink. Two different metrics are used. The first 

focuses on the network resources; the second considers processing overheads. All measurements are performed on 

an IBM BladeCenter with 14 HS20 blade servers installed (hostnames awing1-awing14). Each blade has dual 

2.8GHz Xeon processors with 1GB RAM and a 1 Gb/s NIC card running RH Linux 9.0. Source, intermediate, and 

sink nodes participating are each hosted on a different blade.  

5.1. Scientific Collaboration – Experiment Configuration 

A specific configuration of Smartpointer is one in which the framework is used to generate visualizations 

of certain molecular dynamics processes for different clients. A small depiction of molecular data uses a 640 by 480 

by 3 byte color image as source data. Two clients each require different image formulations. The first client has 

limited bandwidth and display capabilities and desires a 320 by 240 by 1 byte grayscale image where the conversion 

to grayscale is performed by the equation p = (R × 0.299 + G × 0.587 + B × 0.114) + 0.5. The second does not care 

about color and would rather be sure there is sufficient bandwidth to handle the data load, thus requests a 640 by 480 

by 1 byte grayscale image instead of the source format. The third client desires a full color, full size image.  

Figure 4: Using Overlays to Execute Transformations 

In Figure 4, Sink 1 has its transformations split across two nodes. Sink 2 has its single transformation on 

one intermediate node. Sink 3 does not need any transformations and just extracts a copy of the original data stream. 

The optimizer recognizes the identical grayscale conversion for Sinks 1 and 2 merges the two operations. For 
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comparison, measurements are also taken when all of the transformations are hosted on the source and separately, 

when each sink hosts its own transformations. 

To generate a broader understanding of the impact of data volume, we vary the example to include different 

sized source images. In additional tests, we manually scale all image sizes up by 50% and 100% and also down by 

50% to compare the relative savings our approach offers in each of the four scenarios. To maintain a consistent 

comparison base, we also scale the client requests similarly for each test. 

5.2 Scientific Collaboration – Experiment Results 

The experiments are driven by limitations in network bandwidth due to both the large data volumes that 

commonly occur and the fact that an inappropriate implementation would result in the source data volume becoming 

the union of all potential client needs. The optimization metric considered is end-to-end delay since online 

collaboration is not feasible without reasonable delay constraints on the data streams being produced, transported, 

and displayed. Since the end node machines may not be able to deliver services to meet the needs of multiple clients, 

the approach taken includes offloading processing to intermediate nodes. 

Measurements of the network bandwidths required for each of source, sink, and overlay hosting of the data 

morphing code are presented below. These measurements involve the transformation graph automatically (and 

dynamically) generated by XCHANGE and illustrated in Figure 5.  

Figure 5: Generated Deployment Graph 

For this set of experiments, XCHANGE is configured to only morph data on intermediate nodes, only on the 

source, or only on the sinks. The nodes labeled i1, i2, and i3 will have the code generated from the various 
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transforms installed as appropriate for the deployment model. Figure 6 displays the results. The labels correspond to 

the links pictured in Figure 5. The stacking of each bar corresponds to the ordering in the legend at the right. 

Figure 6: Scientific Example Performance Graph for a 1280x960 Image Size 

 The performance results presented in Figure 6 support the claim that XCHANGE can generate efficient service 

overlay networks. The (representative) measurements depicted in Figure 6 show that the network hosted model for 

dynamically generated data morphing code is nearly as bandwidth efficient overall as the source hosted model. Of 

particular note is that the “last mile” portion of the transmission has been offloaded from both ends, moving these 

potential bottlenecks into the overlay network infrastructures that generally have better bandwidths. One proposed 

future investigation would evaluate schemes for determining the efficacy and appropriate conditions to duplicate 

intermediate nodes to further reduce single link bottlenecks. 

5.3 Healthcare – Experiment Setup 

Consider a general hospital infrastructure consisting of a wide variety of specialized departmental systems 

and more general systems for cross-departmental use [35]. These systems exchange information through event 

messaging such as an admission event, ordering a lab test, or the emission of a set of lab results. Each departmental 

system maintains a private data repository tracking patient state information to guide data retention and messaging 

operations. Since hospitals usually buy specific systems for each department, a typical installation is comprised of a 

large number of different vendor products. In response, the HL-7 [22] standard for healthcare messaging codifies the 
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format and content of inter-system messages. For cross-platform compatibility, the format is text-based with 

markers to separate variable width fields.  

Issues with the standard and its use include the following. First, its text format incurs parsing overheads 

that could be overcome with alternate binary representations. Second, each message generated by some system will 

almost certainly need to be translated to be understood or be usable by the receiving system, constituting another 

potential advantage of a binary representation. Third, since HL-7 is sufficiently flexible, occasionally ambiguous, 

and sometimes improperly implemented, the development of custom interfaces is typical, as evidenced by multiple 

companies providing them [23, 24, 25]. Finally, for all such tasks, budget limitations constrain the ways in which 

response times can be kept sufficiently low with rising patient data volumes. 

One sample scenario consists of a typical hospital with ADT, transactional repository, order management, 

laboratory management, and medical imaging, among other systems. The ADT system is used to track admissions, 

discharges, and transfers among hospital locations for patients. Each ADT event must be copied to a transactional 

repository for per-patient, general use and to various departmental systems that need to know patient status or other 

patient attributes. For example, when a patient must have some laboratory tests performed, basic patient 

identification information must be available in the laboratory system to be able to link the results of the tests back to 

the patient records. Some patient attributes like pregnancy status may also be required in order to generate accurate 

results. Data generation events like ADT messages happen for each patient event or activity. Some of these include 

medical imaging, dietary orders, respiratory treatments, and pharmacy dispensing. By applying our system in this 

domain, redundant calculations across departments can be consolidated into the overlay network reducing compute 

load across all affected departments. 

Two concrete examples are described in this paper. The first represents a physician ordering a complex lab 

test to generate panels of multiple results, each generated from testing a few different specimens. For instance, a 

complete metabolic panel consists of approximately 15 discrete values generated from separate urine and blood 

specimens. The lab system is configured to run a particular set of tests for each order based on the specimen type. It 

matches the specimen accession number to the electronically transmitted lab order and performs the required tests. 

The results are sent back as a list of components to the ordering system for further processing. In order for the 

results to be useful to the physician, they require units adjustment, new composite results generated by combining 

some of the discrete values, and separating them into subpanels. All of this work is performed to transform data into 
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something the transactional system can understand. The second example is the calculation of the Body Mass Index 

(BMI) [37]. While the calculation itself is not complex [38], it may need to be done across three or more 

departments in the hospital. The dietary department uses it to help determine the type of diet to provide to the patient 

[39]. Respiratory uses it as part of the calculation of respiratory functions [40]. The pharmacy uses it to determine 

appropriate dosages for prescribed medicines [41]. Large, multi-facility hospital systems can have 30-50 or even 

more individual hospitals and outpatient facilities [42, 43]. Savings can be attained by centralizing all of the IT 

systems for all of these facilities. In these scenarios, the frequency of the BMI calculations increases beyond a trivial 

amount of CPU through volume alone. By employing XCHANGE, we can pre-calculate this value once and ‘on the fly’ 

as the data is transferred to all of these departments thereby freeing the specialized departmental systems to focus on 

the core tasks for which they are designed. Another application of this technology is for anonymization of patient 

data to protect privacy by dynamically applying obfuscation [60] on demand rather than precalculation and storage. 

5.4 Healthcare - Experiment Results 

The general outcome of the experiments presented below is that using the XCHANGE framework can offload 

message transformation processing from primary systems with no negative effect on end-to-end time.  

One experiment consists of the transmission of a set of 16 components where the receiving system requires 

components to be decomposed into 3 panels with 5 components each. Further, one of the components must have its 

units scaled to a range more familiar to physicians and another will be the aggregate of two components with a 

simple multiplicative relationship of (Z = Y × X). Using three nodes, a lab system (source), an intermediate node 

(messaging hub), and a sink (transactional system), measurements demonstrate that there are no discernible 

differences in the end-to-end delay (2.00 seconds total for 10000 events) or in the volume of data hosted among any 

of our source, ‘in network’, or sink hosted models. Thus, the goal to offload computing from the server with little to 

no impact on end-to-end delay is attained. 

The second experiment consists of calculating the BMI on an ADT message transmission. For simplicity, a 

typical ADT admission event is stripped down to its most relevant fields. High event volumes are emulated to 

evaluate potential savings in high end environments. In contrast to the lab example above, we choose to simulate the 

possible event load for a busy night across all hospitals in a large provider network. We consider a volume of 600 

patients [44] across 50 hospitals for a total of 30000 events. To generate the events as quickly as possible, three 

source systems feed a single intermediate node that propagates all results to a single departmental system.  
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Measurements show no discernible differences in end-to-end latency when hosting the calculation on the 

intermediate vs. the destination node. We observe that all 30000 events are processed in 1.03 seconds when hosting 

it on the server. When hosting on the intermediate node or on the sink, we reduce the time to 0.85 seconds in both 

cases, a 17% savings. Therefore, by pulling the calculation from the server into the overlay network, the time to 

transmit events and the CPU load on the server are reduced. 

5.5 Results Summary 

 The dynamic, resource-aware generation and deployment of data morphing code can improve network 

resource utilization and/or reduce server loads without negative effects on end-to-end latency. The scientific 

example demonstrates the ability of XCHANGE to reduce per-link resource costs and/or adapt to available CPU 

resources as appropriate for current conditions. Network hosted data morphing shows a 64% savings over sink 

hosted transforms and a 14% savings over source hosted transformations. The lab results healthcare example does 

not experience performance gains, but demonstrates the ability to offload services from the host without affecting 

end-to-end performance. For the BMI calculation example, by hosting morphing code in the network, we 

demonstrate a 17% improvement over the source hosted model. 

Experiments also highlight that code generation costs are small, particularly when compared to deployment 

delays. That is, initial deployment performance dominates generation costs by taking 100s of milliseconds for 10s of 

nodes. Further, results show that it is important to dynamically generate data morphing code, as demonstrated by the 

scientific example, which shows high variability in network link costs for hosting generated code on the source, in 

the network, or on the sink. By evaluating current resource availabilities, code generation can change how morphing 

code is organized and then deploy the generated code differently to reduce the impact on the most constrained 

resource.  

The current optimizations used in XCHANGE are straightforward involving simple common full expression 

elimination rather than the more complex common subexpression elimination. Our distributed transforms and the 

requirement to properly generate intermediate types add some additional complexity we have chosen not to explore 

at this time. Other possibilities like common subexpression elimination, operation reordering, dead code elimination, 

and other techniques common from the compilers field could also be employed. Additional useful optimization 

approaches and techniques are evaluated in [13]. 
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 An important element of this work is the ability to add new clients at runtime and merge them into a 

running overlay network. XCHANGE deals with this without interrupting the currently running system by first 

deploying the new network of nodes in parallel, setting up the full subscription model, and finally sending the data 

over the new overlay structure. We do not currently handle the transfer of any privately stored state in a transform 

function. Future extensions to this work will handle such stateful cases. 

6. Conclusions and Future Work 

XCHANGE shows that by performing code generation for data transforms at runtime, i.e., dynamic data 

morphing, and in overlay networks can lead to substantial performance improvements over static approaches. This 

even holds when code generation uses only rudimentary optimizations like merging common operations. This is 

because runtime generation can consider both current resource availability and end user needs. Experimental results 

attained with the Smartpointer interactive high performance application establish a 64% improvement for the ‘in 

network’ deployment of data morphing determined by XCHANGE compared with sink hosted data transformations, 

and a 14% improvement compared with source hosted transformations. Experiments with a representative healthcare 

application show that it is possible to host operations in the overlay with either no impact or a 17% improvement in 

the end-to-end time compared with a source hosted model. 

The point of this paper is not to develop ‘best’ code generation or deployment schemes. Instead, the key 

contribution of XCHANGE is its ability to dynamically generate code from declarative descriptions of the data 

transforms necessary in distributed applications using the deployment schemes and performance metrics most 

appropriate for individual applications and systems (e.g., CPU availability, network bandwidth availability, …). 

Therefore, our future work will focus more on functionality than performance improvements. One idea is to use 

domain-specific languages to specify certain desired data semantics such as desired data resolution in a multi-scale 

modeling code. Another direction is to better support incremental changes to existing deployments, to add new 

clients to an existing deployment with small impact on the currently running application, or in response to a dynamic 

assessment that redeployment is necessary to continue to meet application requirements. We will also consider 

additional optimization techniques such as how and when to duplicate nodes that would normally be merged in order 

to generate a better data flow. For example, when there is a sufficiently large bottleneck for a particular node, it may 

be worth duplicating the transforms on another node and splitting the traffic over the multiple nodes. An area where 

we have done some initial work is to evaluate doing low-level common subexpression elimination rather than 
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performing the optimizations at the full expression level. Note that Gryphon uses a similar idea using a SQL-style 

data model [36]. 

 A shortcoming of the current implementation of XCHANGE is its inability to deal with multiple similar 

sources serving a set of clients. This would involve determining how and when to combine operators to form a graph 

with disparate sources feeding into a network that ultimately connects with the various sinks. One possible approach 

may be to meld multiple data streams into a coherent model before considering client requests. 
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